We present in this paper an incentive-compatible distributed optimization method applied to social choice problems. The method works by computing and collecting VCG taxes in a distributed fashion. This introduces a certain resilience to manipulation from the problem solving agents. An extension of this method sacrifices Pareto-optimality in favor of budget-balance: the solutions chosen are not optimal anymore, but the advantage is that the self interested agents pay the taxes between themselves, thus producing no tax surplus. This eliminates unwanted incentives for the problem solving agents, ensuring their faithfulness.
Case-based reasoning (CBR) is an approach to problem solving that emphasizes the role of prior experience during future problem solving (i.e., new problems are solved by reusing and if necessary adapting the solutions to similar problems that were solved in the past). It has enjoyed considerable success in a wide variety of problem solving tasks and domains. Following a brief overview of the traditional problem-solving cycle in CBR, we examine the cognitive science foundations of CBR and its relationship to analogical reasoning. We then review a representative selection of CBR research in the past few decades on aspects of retrieval, reuse, revision, and retention.
R. LÓPEZ DE MÁNTARAS ET AL.
Traditional centralised approaches to security are difficult to apply to large, distributed marketplaces in which software agents operate. Developing a notion of trust that is based on the reputation of agents can provide a softer notion of security that is sufficient for many multi-agent applications. In this paper, we address the issue of incentivecompatibility (i.e. how to make it optimal for agents to share reputation information truthfully), by introducing a sidepayment scheme, organised through a set of broker agents, that makes it rational for software agents to truthfully share the reputation information they have acquired in their past experience. We also show how to use a cryptographic mechanism to protect the integrity of reputation information and to achieve a tight bounding between the identity and reputation of an agent.
The proliferation of online news creates a need for filtering interesting articles. Compared to other products, however, recommending news has specific challenges: news preferences are subject to trends, users do not want to see multiple articles with similar content, and frequently we have insufficient information to profile the reader.In this paper, we introduce a class of news recommendation systems based on context trees. They can provide highquality news recommendations to anonymous visitors based on present browsing behaviour. Using an unbiased testing methodology, we show that they make accurate and novel recommendations, and that they are sufficiently flexible for the challenges of news recommendation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.