We present in this paper an incentive-compatible distributed optimization method applied to social choice problems. The method works by computing and collecting VCG taxes in a distributed fashion. This introduces a certain resilience to manipulation from the problem solving agents. An extension of this method sacrifices Pareto-optimality in favor of budget-balance: the solutions chosen are not optimal anymore, but the advantage is that the self interested agents pay the taxes between themselves, thus producing no tax surplus. This eliminates unwanted incentives for the problem solving agents, ensuring their faithfulness.
In the efficient social choice problem, the goal is to assign values, subject to side constraints, to a set of variables to maximize the total utility across a population of agents, where each agent has private information about its utility function. In this paper we model the social choice problem as a distributed constraint optimization problem (DCOP), in which each agent can communicate with other agents that share an interest in one or more variables. Whereas existing DCOP algorithms can be easily manipulated by an agent, either by misreporting private information or deviating from the algorithm, we introduce M-DPOP, the first DCOP algorithm that provides a faithful distributed implementation for efficient social choice. This provides a concrete example of how the methods of mechanism design can be unified with those of distributed optimization. Faithfulness ensures that no agent can benefit by unilaterally deviating from any aspect of the protocol, neither informationrevelation, computation, nor communication, and whatever the private information of other agents. We allow for payments by agents to a central bank, which is the only central authority that we require. To achieve faithfulness, we carefully integrate the Vickrey-Clarke-Groves (VCG) mechanism with the DPOP algorithm, such that each agent is only asked to perform computation, report information, and send messages that is in its own best interest. Determining agent i's payment requires solving the social choice problem without agent i. Here, we present a method to reuse computation performed in solving the main problem in a way that is robust against manipulation by the excluded agent. Experimental results on structured problems show that as much as 87% of the computation required for solving the marginal problems can be avoided by re-use, providing very good scalability in the number of agents. On unstructured problems, we observe a sensitivity of M-DPOP to the density of the problem, and we show that reusability decreases from almost 100% for very sparse problems to around 20% for highly connected problems. We close with a discussion of the features of DCOP that enable faithful implementations in this problem, the challenge of reusing computation from the main problem to marginal problems in other algorithms such as ADOPT and OptAPO, and the prospect of methods to avoid the welfare loss that can occur because of the transfer of payments to the bank.
The reason for using distributed constraint satisfaction algorithms is often to allow agents to find a solution while revealing as little as possible about their variables and constraints. So far, most algorithms for DisCSP do not guarantee privacy of this information. This paper describes some simple techniques that can be used with DisCSP algorithms such as DPOP, and provide sensible privacy guarantees based on the distributed solving process without sacrificing its efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.