Naphthalene 1,2-dioxygenase (NDO) has been computationally understudied despite the extensive experimental knowledge obtained for this enzyme, including numerous crystal structures and over 100 demonstrated substrates. In this study, we have developed a substrate prediction model that moves away from the traditional active-site-centric approach to include the energetics of substrate entry into the active site. By comparison with experimental data, the accuracy of the model for predicting substrate oxidation is 92%, with a positive predictive value of 93% and a negative predictive value of 98%. Also, the present analysis has revealed that the amino acid residues that provided the largest energetic barrier for compounds entering the active site are residues F224, L227, P234, and L235. In addition, F224 is proposed to play a role in controlling ligand entrance via π-π stacking stabilization as well as providing stabilization via T-shaped π-π interactions once the ligand has reached the active-site cavity. Overall, we present a method capable of being scaled to computationally discover thousands of substrates of NDO, and we present parameters to be used for expanding the prediction method to other members of the Rieske non-heme iron oxygenase family.
Emerging contaminants are principally personal care products not readily removed by conventional wastewater treatment and, with an increasing reliance on water recycling, become disseminated in drinking water supplies. Carbamazepine, a widely used neuroactive pharmaceutical, increasingly escapes wastewater treatment and is found in potable water. In this study, a mechanism is proposed by which carbamazepine resists biodegradation, and a previously unknown microbial biodegradation was predicted computationally. The prediction identified biphenyl dioxygenase from Paraburkholderia xenovorans LB400 as the best candidate enzyme for metabolizing carbamazepine. The rate of degradation described here is 40 times greater than the best reported rates. The metabolites cis-10,11-dihydroxy-10,11-dihydrocarbamazepine and cis-2,3-dihydroxy-2,3-dihydrocarbamazepine were demonstrated with the native organism and a recombinant host. The metabolites are considered nonharmful and mitigate the generation of carcinogenic acridine products known to form when advanced oxidation methods are used in water treatment. Other recalcitrant personal care products were subjected to prediction by the Pathway Prediction System and tested experimentally with P. xenovorans LB400. It was shown to biodegrade structurally diverse compounds. Predictions indicated hydrolase or oxygenase enzymes catalyzed the initial reactions. This study highlights the potential for using the growing body of enzyme-structural and genomic information with computational methods to rapidly identify enzymes and microorganisms that biodegrade emerging contaminants.
The type II transmembrane serine protease TMPRSS2 facilitates the entry of coronaviruses, such as SARS-CoV-2, into host cells by cleaving the S 1 /S 2 interface of the viral spike protein. Based on structural data derived from X-ray crystallographic data of related trypsin-like proteases, a homology model of TMPRSS2 is described and validated using the broad spectrum COVID-19 drug candidate camostat as a probe. Both active site recognition and catalytic function are examined using quantum mechanics/molecular mechanics molecular dynamic (QM/MM MD) simulations of camostat and its active metabolite, 4-(4-guanidinobenzoyloxy) phenylacetate (GBPA). Substrate binding is shown to be primarily stabilized through salt bridge formation between the shared guanidino pharmacophore and D435 in pocket A (flanking the catalytic S441). Based on the binding mode of GBPA, residues K342 and W461 have been identified as potential contacts involved in TMPRSS2 selective binding and activity. Additional data is reported that indicates the transition state structure is stabilized through H-bonding interactions with the backbone N-H groups within an oxyanion hole following bottom-side attack of the carbonyl by S441. This is supported by prior work on related serine proteases suggesting further strategies to exploit in the design of more potent inhibitors. Taken overall, the proposed structure along with the key contact sites and mechanistic features identified should prove highly advantageous to the design and rational development of safe and effective therapeutics that target TMPRSS2 and avoid inhibition of other trypsin-dependent processes.
Buried active sites of enzymes are connected to the bulk solvent through a network of hydrophobic channels. We developed a discretized model that can accurately predict ligand transport along hydrophobic channels up to six orders of magnitude faster than any other existing method. The non-dimensional nature of the model makes it applicable to any hydrophobic channel/ligand combination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.