Emerging contaminants are principally personal care products not readily removed by conventional wastewater treatment and, with an increasing reliance on water recycling, become disseminated in drinking water supplies. Carbamazepine, a widely used neuroactive pharmaceutical, increasingly escapes wastewater treatment and is found in potable water. In this study, a mechanism is proposed by which carbamazepine resists biodegradation, and a previously unknown microbial biodegradation was predicted computationally. The prediction identified biphenyl dioxygenase from Paraburkholderia xenovorans LB400 as the best candidate enzyme for metabolizing carbamazepine. The rate of degradation described here is 40 times greater than the best reported rates. The metabolites cis-10,11-dihydroxy-10,11-dihydrocarbamazepine and cis-2,3-dihydroxy-2,3-dihydrocarbamazepine were demonstrated with the native organism and a recombinant host. The metabolites are considered nonharmful and mitigate the generation of carcinogenic acridine products known to form when advanced oxidation methods are used in water treatment. Other recalcitrant personal care products were subjected to prediction by the Pathway Prediction System and tested experimentally with P. xenovorans LB400. It was shown to biodegrade structurally diverse compounds. Predictions indicated hydrolase or oxygenase enzymes catalyzed the initial reactions. This study highlights the potential for using the growing body of enzyme-structural and genomic information with computational methods to rapidly identify enzymes and microorganisms that biodegrade emerging contaminants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.