People organize their social relationships under a restriction on the number that a single individual can maintain simultaneously (the so-called Dunbar’s number, ~150). Additionally, personal networks show a characteristic layered structure where each layer corresponds to relationships of different emotional closeness. This structure, referred to as Dunbar’s circles, has mostly been considered from a static viewpoint, and their structure and evolution is largely unexplored. Here we study the issue of the evolution of the structure of positive and negative relationships in early adolescence by using data from students in their first year at middle school obtained from surveys conducted in class in two different waves separated by several months. Our results show that, initially, students have a lower number of total relationships but the majority are more intense and over time they report a higher number of total relationships, but the more intense relationships appear in a lower proportion. We have also found differences in the structure of communities at both temporal moments. While in the first instance the communities that appeared are mixed, made up of both boys and girls, in the second they changed so that they were separated primarily by gender. In addition, the size of each community was stabilized around 15 people, which coincides with the size of the second Dunbar’s circle, known as the sympathy group in social psychology. As a consequence, in groups with around 20 students of the same gender, they tend to split in two separate communities of about 10 each, below the second Dunbar’s circle threshold. On the other hand, groups with more stable community structure appear to go through the inverse process of friendship evolution, becoming more focused on their best relationships. All these results suggest how the layered structure of the personal network, as well as the community structure of the social network, emerge directly from the union of both positive and negative relationships. Thus, we provide a new perspective about its temporal evolution that may have relevant applications to improve school life and student performance.
Ribonucleases are promising agents for use in anticancer therapy. Engineering a nuclear localization signal into the sequence of the human pancreatic ribonuclease has been revealed as a new strategy to endow this enzyme with cytotoxic activity against tumor cells. We previously described a cytotoxic human pancreatic ribonuclease variant, named PE5, which is able to cleave nuclear RNA, inducing the apoptosis of cancer cells and reducing the amount of P-glycoprotein in different multidrug-resistant cell lines. These results open the opportunity to use this ribonuclease in combination with other chemotherapeutics. In this work, we have investigated how to improve the properties of PE5 as an antitumor drug candidate. When attempting to develop a recombinant protein as a drug, two of the main desirable attributes are minimum immunogenicity and maximum potency. The improvements of PE5 have been designed in both senses. First, in order to reduce the potential immunogenicity of the protein, we have studied which residues mutated on PE5 can be reverted to those of the wild-type human pancreatic ribonuclease sequence without affecting its cytotoxicity. Second, we have investigated the effect of introducing an additional nuclear localization signal at different sites of PE5 in an effort to obtain a more cytotoxic enzyme. We show that the nuclear localization signal location is critical for the cytotoxicity. One of these variants, named NLSPE5, presents about a 10-fold increase in cytotoxicity respective to PE5. This variant induces apoptosis and kills the cells using the same mechanism as PE5.
Human relationships are structured in a set of layers, ordered from higher (intimate relationships) to lower (acquaintances) emotional and cognitive intensity. This structure arises from the limits of our cognitive capacity and the different amounts of resources required by different relationships. However, it is unknown whether nonhuman primate species organize their affiliative relationships following the same pattern. We here show that the time chimpanzees devote to grooming other individuals is well described by the same model used for human relationships, supporting the existence of similar social signatures for both humans and chimpanzees. Furthermore, the relationship structure depends on group size as predicted by the model, the proportion of high-intensity connections being larger for smaller groups.
Human relationships are structured in a set of layers, ordered from higher (intimate relationships) to lower (acquaintances) emotional and cognitive intensity. This structure arises from the limits of our cognitive capacity and the different amounts of resources required by different relationships. However, it is unknown whether nonhuman primate species organize their affiliative relationships following the same pattern. We here show that the time chimpanzees devote to grooming other individuals is well described by the same model used for human relationships, supporting the existence of similar social signatures for both humans and chimpanzees. Furthermore, the relationship structure depends on group size as predicted by the model, the proportion of high intensity connections being larger for smaller groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.