Contact CEH NORA team at noraceh@ceh.ac.ukThe NERC and CEH trademarks and logos ('the Trademarks') are registered trademarks of NERC in the UK and other countries, and may not be used without the prior written consent of the Trademark owner. 1The following paper is the final version prior to publication on 22 September 2015. are proposed, the way in which indicators could contribute to classification is discussed. All of the methods described in Table 1 consider a hierarchy of spatial units, but the degree to which they develop the other aspects of the conceptual approach proposed by Frissell et al.(1986) varies widely.2. Many of the frameworks focus entirely on hydromorphological processes and forms that are either directly measured or inferred. This is because interactions between processes and forms control the dynamic morphology or behaviour of rivers and their mosaics of habitats.Hydromorphological processes drive longitudinal and lateral connectivity within river networks and corridors, the assemblage and turnover of physical habitats, and the sedimentary and vegetation structures associated with those habitats.3. Some frameworks are conceptual, providing a way of thinking about or structuring analyses of river systems, and interpreting their processes, morphology and function (e.g. Frissell et al., 1986;Habersack, 2000;Fausch et al., 2002;Thorp et al., 2006;Beechie et al., 2010;McCluney et al., 2014). Some frameworks are more quantitative, generating one or more indices or classifications of spatial units that support assessment of river systems (e.g. Rosgen, 1994;González del Tánago and García de Jalón, 2004;Merovich et al., 2013;Rinaldi et al., 2013Rinaldi et al., , 2015a MacDonald, 2002;Brierley and Fryirs, 2005;Beechie et al., 2010; Rinaldi et al., 2013a Rinaldi et al., , 2015.In some cases, theoretical or historical analyses or consideration of specific future scenarios are used to develop space-time understanding that can support management decisionmaking (e.g. Buffington, 1997, 1998;Montgomery and MacDonald, 2002;Benda et al., 2004;Brierley and Fryirs, 2005;McCluney et al., 2014 , 1997, 1998Montgomery and MacDonald, 2002;Benda et al., 2004;Brierley and Fryirs, 2005;Merovich et al., 2013;Rinaldi et al., 2013Rinaldi et al., , 2015a. Furthermore, some of the frameworks include indicators of human pressures and their impacts (e.g. Merovich et al., 2013;McCluney et al., 2014;Rinaldi et al., 2013Rinaldi et al., , 2015a.6. Finally, although most frameworks could be described as incorporating processes to some degree, some methods are particularly process-based, even when processes are inferred from forms and associations rather than being quantified by direct measurements.Frameworks that consider temporal dynamics and trajectories of historical change (see point 4, above) are particularly effective in developing understanding of processes and the impacts of changed processes cascading through time and across spatial scales.Although the list of frameworks presented in Table 1 is far from comprehensive, ...
We propose a conceptual model of vegetation-hydrogeomorphology interactions and feedbacks within river corridors (i.e. river channels and their floodplains) that builds on previous similar hydrogeomorphologically centred models by (i) incorporating hydrogeomorphological constraints on river corridor vegetation from region to reach scales; (ii) defining five dynamic river corridor zones within which different hydrogeomorphological processes are dominant so that plants and physical processes interact in different ways, and considering the potential distribution of these zones longitudinally from river headwaters to mouth, laterally across the river corridor, and in relation to different river planform styles; (iii) considering the way in which vegetation-related landforms within each zone may reflect processes of self-organization and the role of particular plant species as physical ecosystem engineers within the context of the dominant hydrogeomorphological processes; (iv) focussing, in particular, upon a 'critical zone' at the leading edge of plant-hydrogeomorphological process interactions that is located somewhere within the area of the river corridor perennially inundated by flowing water (zone 1) and the area that is frequently inundated and subject to both sediment erosion and deposition processes (zone 2). Within the critical zone some plant species strongly influence the position and character of the margin between the river channel and floodplain, affecting channel width, channel margin form and dynamics, and the transition from one river planform type to another; and (v) considering the vegetated pioneer landforms that develop within the critical zone and how their morphological impact needs to be scaled to the river size.The model is illustrated using three example reaches from rivers within different biogeographical zones of Europe, and its potential application in the context of river management and restoration/rehabilitation is discussed.
– The spawning period of brown trout (Salmo trutta L.) was studied in the river Castril, southern Spain, by means of redd counts. This mountain stream is located near to the southern limit of the species’ natural distribution range and it shows a highly unpredictable flow regime. The spawning period extended from December to mid‐April and the maximum reproductive activity was in February. These results represent the latest reproduction date and the longest spawning period reported in the literature along the natural distribution range of the species. However, belated spawning in the Castril is congruent with the known latitudinal cline: the lower the latitude, the later the spawning period. Our results, along with a review of the literature on natural populations, also showed that the duration of reproduction is the longer, the lower the latitude. Spawning lasted twice as long in the main stem of the river, which is connected with a reservoir, than in the isolated reaches. These differences may be linked to the influence of the reservoir and to habitat fragmentation. We discuss and support the hypothesis that a long spawning period is an advantage for survival in unpredictable habitats. The belated and protracted spawning period found in river Castril has important implications in fisheries management. A strong research effort is needed in order to fill the critical lack of data on southern brown trout populations.
This paper addresses the determination of the realized thermal niche and the effects of climate change on the range distribution of two brown trout populations inhabiting two streams in the Duero River basin (Iberian Peninsula) at the edge of the natural distribution area of this species. For reaching these goals, new methodological developments were applied to improve reliability of forecasts. Water temperature data were collected using 11 thermographs located along the altitudinal gradient, and they were used to model the relationship between stream temperature and air temperature along the river continuum. Trout abundance was studied using electrofishing at 37 sites to determine the current distribution. The Representative Concentration Pathways RCP4·5 and RCP8·5 change scenarios adopted by the International Panel of Climate Change for its Fifth Assessment Report were used for simulations and local downscaling in this study. We found more reliable results using the daily mean stream temperature than maximum daily temperature and their respective 7 days moving average to determine the distribution thresholds. Thereby, the observed limits of the summer distribution of brown trout were linked to thresholds between 18·1 and 18·7°C. These temperatures characterize a realized thermal niche narrower than the physiological thermal range. In the most unfavourable climate change scenario, the thermal habitat loss of brown trout increased to 38% (Cega stream) and 11% (Pirón stream) in the upstream direction at the end of the century; however, at the Cega stream, the range reduction could reach 56% due to the effect of a 'warm-window' opening in the piedmont reach.
Microhabitat use by three endemic Iberian cyprinids, Barbus bocagei (Steindachner), Pseudochondrostoma polylepis (Steindachner), and Squalius pyrenaicus (Gu¨nther) was studied in terms of depth, mean water column velocity, focal height, focal velocity, distance to shore and substrate. Data were obtained by snorkelling during spring and summer at nine sites of the Tagus River Basin, Spain. Habitat suitability criteria (HSC) were calculated, including fish position and focal velocity in the water column. Species comparison showed differences in depth and focal height (indicating a vertical segregation), and greater water velocities for Pseudochondrostoma. Size-class comparisons mainly showed differences in depth and focal height (correlated with fish size). The fish groups (3 species · 3 length classes) were assigned to microhabitat functional types. The results are essential for environmental flow assessments and allow 2-and 3-dimensional habitat simulations in Mediterranean rivers; they are also useful to define critical habitats for the conservation of native fish populations. K E Y W O R D S :Barbus, Chondrostoma, habitat suitability criteria, microhabitat, Squalius.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.