This paper addresses the determination of the realized thermal niche and the effects of climate change on the range distribution of two brown trout populations inhabiting two streams in the Duero River basin (Iberian Peninsula) at the edge of the natural distribution area of this species. For reaching these goals, new methodological developments were applied to improve reliability of forecasts. Water temperature data were collected using 11 thermographs located along the altitudinal gradient, and they were used to model the relationship between stream temperature and air temperature along the river continuum. Trout abundance was studied using electrofishing at 37 sites to determine the current distribution. The Representative Concentration Pathways RCP4·5 and RCP8·5 change scenarios adopted by the International Panel of Climate Change for its Fifth Assessment Report were used for simulations and local downscaling in this study. We found more reliable results using the daily mean stream temperature than maximum daily temperature and their respective 7 days moving average to determine the distribution thresholds. Thereby, the observed limits of the summer distribution of brown trout were linked to thresholds between 18·1 and 18·7°C. These temperatures characterize a realized thermal niche narrower than the physiological thermal range. In the most unfavourable climate change scenario, the thermal habitat loss of brown trout increased to 38% (Cega stream) and 11% (Pirón stream) in the upstream direction at the end of the century; however, at the Cega stream, the range reduction could reach 56% due to the effect of a 'warm-window' opening in the piedmont reach.
Abstract. Climate changes affect aquatic ecosystems by altering temperatures and precipitation patterns, and the rear edges of the distributions of cold-water species are especially sensitive to these effects. The main goal of this study was to predict in detail how changes in air temperature and precipitation will affect streamflow, the thermal habitat of a cold-water fish (the brown trout, Salmo trutta), and the synergistic relationships among these variables at the rear edge of the natural distribution of brown trout. Thirty-one sites in 14 mountain rivers and streams were studied in central Spain. Models of streamflow were built for several of these sites using M5 model trees, and a non-linear regression method was used to estimate stream temperatures. Nine global climate models simulations for Representative Concentration Pathways RCP4.5 and RCP8.5 scenarios were downscaled to the local level. Significant reductions in streamflow were predicted to occur in all of the basins (max. −49 %) by the year 2099, and seasonal differences were noted between the basins. The stream temperature models showed relationships between the model parameters, geology and hydrologic responses. Temperature was sensitive to streamflow in one set of streams, and summer reductions in streamflow contributed to additional stream temperature increases (max. 3.6 • C), although the sites that are most dependent on deep aquifers will likely resist warming to a greater degree. The predicted increases in water temperatures were as high as 4.0 • C. Temperature and streamflow changes will cause a shift in the rear edge of the distribution of this species. However, geology will affect the extent of this shift. Approaches like the one used herein have proven to be useful in planning the prevention and mitigation of the negative effects of climate change by differentiating areas based on the risk level and viability of fish populations.
Climate change affects aquatic ecosystems altering temperature and precipitation patterns, and the rear edge of the distribution of cold-water species is especially sensitive to them. The main goal was to predict in detail how change in air temperature and precipitation will affect streamflow, the thermal habitat of a cold-water fish (brown trout, Salmo trutta Linnaeus 1758), and their synergistic relationships at the rear edge of its natural distribution. 31 sites in 14 mountain rivers 15 and streams were studied in Central Spain. Models at several sites were built using regression trees for streamflow, and a non-linear regression method for stream temperature. Nine global climate models simulations for the RCP4.5 and RCP8.5 (Representative Concentration Pathways) scenarios were downscaled to a local level. Significant streamflow reductions were predicted in all basins (max. -49 %) by the year 2099, showing seasonal differences between them. The stream temperature models showed relationships between models parameters, geology and hydrologic responses. Temperature was sensitive to 20 the streamflow in one set of streams, and summer reductions contributed to additional stream temperature increases (max.3.6ºC), although the most deep-aquifer dependent sites better resisted warming. The predicted increase in water temperature reached up to 4.0ºC. Temperature and streamflow changes will cause a shift of the rear edge of the species distribution.However, geology conditioned the extent of this shift. Approaches like these should be useful in planning the prevention and mitigation of negative effects of climate change by differentiating areas based on the risk level and viability of fish 25 populations.
Climate changes affect aquatic ecosystems by altering temperatures and precipitation patterns, and the rear edges of the distributions of cold-water species are especially sensitive to these effects. The main goal of this study was to predict in detail how changes in air temperature and precipitation will affect streamflow, the thermal habitat of a cold-water fish (the brown trout, Salmo trutta), and the synergistic relationships among these variables at the rear edge of the natural distribution of brown trout. Thirty-one sites in 14 mountain rivers and streams were studied in central Spain. Models of streamflow were built for several of these sites using M5 model trees, and a non-linear regression method was used to estimate stream temperatures. Nine global climate models simulations for Representative Concentration Pathways RCP4.5 and RCP8.5 scenarios were downscaled to the local level. Significant reductions in streamflow were predicted to occur in all of the basins (max. −49 %) by the year 2099, and seasonal differences were noted between the basins. The stream temperature models showed relationships between the model parameters, geology and hydrologic responses. Temperature was sensitive to streamflow in one set of streams, and summer reductions in streamflow contributed to additional stream temperature increases (max. 3.6 • C), although the sites that are most dependent on deep aquifers will likely resist warming to a greater degree. The predicted increases in water temperatures were as high as 4.0 • C. Temperature and streamflow changes will cause a shift in the rear edge of the distribution of this species. However, geology will affect the extent of this shift. Approaches like the one used herein have proven to be useful in planning the prevention and mitigation of the negative effects of climate change by differentiating areas based on the risk level and viability of fish populations.Published by Copernicus Publications on behalf of the European Geosciences Union.
Streamflow and temperature regimes are key components of the physical habitats of instream biological communities. Iberian brown trout (Salmo trutta) populations exist in a climatic border where water scarcity and increasing water temperatures during summer could compromise their viability throughout the 21st century. We predicted climate change-induced modifications in the thermal and hydraulic habitats of both the intragravel (eggs and larvae) and free-swimming (fry, juveniles and adults) stages of brown trout in two mountain streams in central Spain. Spatial-temporal simulations of thermal and hydraulic habitats under two climate change emission scenarios-representative concentration pathway (RCP) 4.5 (mild scenario) and RCP 8.5 (pessimistic)-were conducted at 1-m altitudinal steps using daily air temperature and streamflow predictions. Increased winter temperatures will reduce embryo and larval development time by 12% (RCP 4.5) and 30% (RCP 8.5) in downstream sites by end of the 21st century, but this reduction might be insufficient to compensate for the shortening of the period with temperatures below the viability limits for survival of intragravel phase (20% and 54%, respectively). Combining streamflow and temperature data for free-swimming stages indicated that the suitable summer habitat will be reduced by between 53% and 76% (RCP 4.5) and 70%-90% (RCP 8.5) by 2099. The predicted effects for all developmental stages are critical for determining population viability at both ends of its altitudinal distribution. However, these responses are river-specific, as limiting factors differ among rivers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.