In banana, the maternal transmission of chloroplast DNA and paternal transmission of the mitochondrial DNA provides an exceptional opportunity for studying the maternal and paternal lineage of clones. In the present study, RFLP combined with hybridization of heterologous mitochondrial and chloroplastic probes have been used to characterize 71 wild accessions and 131 diploid and 103 triploid cultivated clones. In additon to Musa acuminata and Musa balbisiana, other species from the four Musa sections were studied to investigate their contribution to the origin of cultivated bananas. These molecular analyses enable the classification of the Musa complex to be discussed. Results ascertain relationships among and between the wild accessions and the mono- and interspecific diploid and triploid bananas, particularly for the acuminata genome. Parthenocarpic varieties are shown to be linked to M. acuminata banksii and M. acuminata errans, thus suggesting that the first center of domestication was in the Philippines - New Guinea area.
Estimation of genetic diversity and distance among tropical maize (Zea mays L.) lines and the correlation between genetic distance (GD) and hybrid performance would determine breeding strategies, classify inbred lines, define heterotic groups, and predict future hybrid performance. The objectives of this study were to estimate (i) heterosis and specific combining ability (SCA) for grain yield under stress and non‐stress environments; (ii) genetic diversity for restriction fragment length polymorphisms (RFLPs) within a set of tropical lines; (iii) GD and classify the lines according to their GD; and (iv) correlation between the GD and hybrid performance, heterosis, and SCA. Seventeen lowland, white tropical inbred lines were represented in a diallel study. Inbred lines and hybrids were evaluated in 12 stress and nonstress environments. The expression of heterosis was greater under drought stress and smaller under low N environments than under nonstress environments. A set of DNA markers identifying 81 loci was used to fingerprint the 17 lines. The level of genetic diversity was high, with 4.65 alleles/locus and polymorphism information content (PIC) values ranging from 0.11 to 0.82. Genomic regions with quantitative trait loci (QTL) for drought tolerance previously identified showed lower genetic diversity. Genetic distance based on RFLP marker data classified the inbred lines in accordance with their pedigree. Positive correlation was found between GD and F1 performance (F1), SCA, midparent heterosis (MPH) and high‐parent heterosis (HPH). Specific combining ability had the strongest correlation with GD. Environment significantly affected the correlations between F1, SCA, MPH, and HPH, with lower values of GD revealed in the more stressed conditions.
In F2 populations, gametic and zygotic selection may affect the analysis of linkage in different ways. Therefore, specific likelihood equations have to be developed for each case, including dominant and codominant markers. The asymptotic bias of the "classical" estimates are derived for each case, in order to compare them with the standard errors of the suggested estimates. We discuss the utility and the efficiency of a previous model developed for dominant markers. We show that dominant markers provide very poor information in the case of segregation distortion and, therefore, should be used with circumspection. On the other hand, the estimation of recombination fractions between codominant markers is less affected by selection than is that for dominant markers. We also discuss the analysis of linkage between dominant and codominant markers.
A partial molecular linkage map of the Musa acuminata diploid genome is presented. This map is based on 58 RFLP, four isozyme and 28 RAPD markers segregating in an F2 population of 92 individuals. A total of 90 loci was detected, 77 of which were placed on 15 linkage groups while 13 segregated independently. Segregation distortions were shown by 36% of all loci, mostly favoring the male parent. Chromosome structural rearrangements were believed to be one of the main causes of these distortions. The use of genetic linkage data to further the genetic and evolutionary knowledge of the genus Musa, as well as to help improve the design of breeding strategies, is discussed.
Estimation of genetic diversity and distance among tropical maizeto predict hybrid performance and the efficiency of pre-(Zea mays L.) lines and the correlation between genetic distance (GD) and hybrid performance would determine breeding strategies, diction was greater with crosses between inbred lines classify inbred lines, define heterotic groups, and predict future hybrid from the same heterotic group than in crosses between performance. The objectives of this study were to estimate (i) heterosis inbred lines from different heterotic groups (Melchand specific combining ability (SCA) for grain yield under stress and inger, 1999). Linkage disequilibrium between DNA non-stress environments; (ii) genetic diversity for restriction fragment markers and genes involved in the expression of target length polymorphisms (RFLPs) within a set of tropical lines; (iii) GD traits is required for GD and hybrid performance to be and classify the lines according to their GD; and (iv) correlation correlated. The effect of the population structure on between the GD and hybrid performance, heterosis, and SCA. Seventhe relationship between genetic distance and heterosis teen lowland, white tropical inbred lines were represented in a diallel was described by Charcosset and Essioux (1994). study. Inbred lines and hybrids were evaluated in 12 stress and non-Tropical maize is grown on approximately 45 million stress environments. The expression of heterosis was greater under drought stress and smaller under low N environments than under ha in lowland tropical environments (Pingali, 2001). Alnonstress environments. A set of DNA markers identifying 81 loci though hybrid development in tropical maize started was used to fingerprint the 17 lines. The level of genetic diversity was
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.