Alzheimer's disease (AD) is a senile dementia characterized by amyloid plaques, neurofibrillary tangles, and synaptic and cell loss. The "amyloid cascade" hypothesis suggests that amyloid- (A), the peptide deposited as amyloid plaques, is the primary insult in AD. However, debate continues over the mechanism of A toxicity and whether fibrillar or oligomeric A is the active species of the peptide that ultimately causes the synaptic loss and dementia associated with AD. Brain-derived neurotrophic factor (BDNF) is required for survival and function of cells compromised in AD. Decreased BDNF causes defects in long-term potentiation and memory and correlates with cognitive decline. We previously demonstrated that BDNF reduction occurs early in the course of AD, suggesting that decreased BDNF may promote neuronal dysfunction in AD. We also demonstrated that three of seven human BDNF transcripts are specifically downregulated in AD. What pathological feature(s) of AD leads to the decreased BDNF is unknown.In this study, we administered both fibrillar and oligomeric conformations of A 1-42 to differentiated SH-SY5Y, a human neuroblastoma cell line, and measured both phosphorylated cAMP response element-binding protein (CREB), a regulator of BDNF transcription, and BDNF total mRNA. We found that oligomeric but not fibrillar preparations of A 1-42 significantly decrease both phosphorylated CREB and total BDNF mRNA. Furthermore, oligomeric A 1-42 decreases BDNF transcripts IV and V in these cells, demonstrating that A 1-42 downregulates the major BDNF transcript decreased in vivo in the AD brain. Thus, oligomeric A 1-42 could compromise neuronal function, causing memory loss and cognitive dysfunction by downregulation of BDNF in AD.
Downregulation of brain-derived neurotrophic factor (BDNF) in the cortex occurs early in the progression of Alzheimer’s disease (AD). Since BDNF plays a critical role in neuronal survival, synaptic plasticity, and memory, BDNF reduction may contribute to synaptic and cellular loss and memory deficits characteristic of AD. In vitro evidence suggests that amyloid-β (Aβ) contributes to BDNF downregulation in AD, but the specific Aβ aggregation state responsible for this downregulation in vivo is unknown. In the present study, we examined cortical levels of BDNF mRNA in three different transgenic AD mouse models harboring mutations in APP resulting in Aβ overproduction, and in a genetic mouse model of Down syndrome. Two of the three Aβ transgenic strains (APPNLh and TgCRND8) exhibited significantly decreased cortical BDNF mRNA levels compared with wild-type mice, whereas neither the other strain (APP swe/PS-1) nor the Down syndrome mouse model (Ts65Dn) was affected. Only APPNLh and TgCRND8 mice expressed high Aβ42/Aβ40 ratios and larger SDS-stable Aβ oligomers (~115 kDa). TgCRND8 mice exhibited downregulation of BDNF transcripts III and IV; transcript IV is also downregulated in AD. Furthermore, in all transgenic mouse strains, there was a correlation between levels of large oligomers, Aβ42/Aβ40, and severity of BDNF decrease. These data show that the amount and species of Aβ vary among transgenic mouse models of AD and are negatively correlated with BDNF levels. These findings also suggest that the effect of Aβ on decreased BDNF expression is specific to the aggregation state of Aβ and is dependent on large oligomers.
Brain-derived neurotrophic factor (BDNF) supports hippocampal, cortical and basal forebrain cholinergic neurons, which lose function in Alzheimer's disease. In Alzheimer's tissues such as hippocampus and parietal cortex, brainderived neurotrophic factor mRNA is decreased three-to fourfold compared with controls. However, the molecular mechanism of the down-regulation of BDNF in Alzheimer's disease is unknown. The human brain-derived neurotrophic factor gene has multiple promoters governing six non-coding upstream exons that are spliced to one downstream coding exon, leading to six different transcripts. Here we report an alternate human splice variant within exon 4I for a total of seven transcripts. Previous brain-derived neurotrophic factor mRNA measurements in Alzheimer's disease tissue were done using the downstream coding exon present in all transcripts. Using RT-PCR primers specific for each upstream exon, we observe a significant decrease in three human brainderived neurotrophic factor mRNA transcripts in Alzheimer's disease samples compared with controls. Transcripts 1 and 3 each exhibit a two-fold decrease, and transcript 2 shows a five-fold decrease. There are no significant differences between control and Alzheimer's disease samples for the other transcripts, including the new splice variant. In rat, both transcripts 1 and 3 are regulated through the transcription factor cAMP response element binding protein, whose phosphorylation is decreased in the Alzheimer's disease brain. This could lead to specific down-regulation of the brainderived neurotrophic factor transcripts shown here.
Defects in synaptic development and plasticity may lead to autism. Brain-derived neurotrophic factor (BDNF) plays a critical role in synaptogenesis and synaptic plasticity. BDNF is synthesized as a precursor, pro-BDNF, which can be processed into either a truncated form or into mature BDNF. Previous studies reported increased BDNF-immunoreactive protein in autism, but the mechanism of this increase has not been investigated. We examined BDNF mRNA by real-time reverse transcription-polymerase chain reaction and BDNF protein by Western blotting and enzyme-linked immunosorbent assay in postmortem fusiform gyrus tissue from 11 patients with autism and 14 controls. BDNF mRNA levels were not different in the autism versus control samples, but total BDNF-like immunoreactive protein, measured by enzyme-linked immunosorbent assay, was greater in autism than in controls. Western blotting revealed greater pro-BDNF and less truncated BDNF in autism compared with controls. These data demonstrate that increased levels of BDNF-immunoreactive protein in autism are not transcriptionally driven. Increased pro-BDNF and reduced truncated BDNF are consistent with defective processing of pro-BDNF to its truncated form. Distortion of the balance among the 3 BDNF isoforms, each of which may exhibit different biological activities, could lead to changes in connectivity and synaptic plasticity and, hence, behavior. Thus, imbalance in proteolytic isoforms is a possible new mechanism for altered synaptic plasticity leading to autism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.