Both greedy and domain-oriented REG algorithms have significant strengths but tend to perform poorly according to humanlikeness criteria as measured by, e.g., Dice scores. In this work we describe an attempt to combine both perspectives into a single attribute selection strategy to be used as part of the Dale & Reiter Incremental algorithm in the REG Challenge 2008, and the results in both Furniture and People domains.
We present a follow-up of our previous frequency-based greedy attribute selection strategy. The current version takes into account also the instructions given to the participants of TUNA trials regarding the use of location information, showing an overall improvement on string-edit distance values driven by the results on the Furniture domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.