Today, the power system operation represents a challenge given the security and reliability requirements. Mathematical models are used to represent and solve operational and planning issues related with electric systems. Specifically, the AC optimal power flow (ACOPF) and the DC optimal power flow (DCOPF) are tools used for operational and planning purposes. The DCOPF versions correspond to lineal versions of the ACOPF. This is due to the fact that the power flow solution is often hard to obtain with the ACOPF considering all constraints. However, the simplifications use only active power without considering reactive power, voltage values and losses on transmission lines, which are crucial factors for power system operation, potentially leading to inaccurate results. This paper develops a detailed formulation for both DCOPF and ACOPF with multiple generation sources to provide a 24-h dispatching in order to compare the differences between the solutions with different scenarios under high penetration of wind power. The results indicate the DCOPF inaccuracies with respect to the complete solution provided by the ACOPF.
In Colombia, as a historic milestone, the first long-term auction of non-conventional renewable sources was held in 2019, with the aim of the National Government to take a major step in the energy transition policy. The auction organized by the Ministerio de Minas y Energ铆a (MME) defined the objectives, rules and type of auction. The results of the first auction indicate that eight project were selected by a pay-as-bid auction scheme, five wind and three solar projects will imitate operations at 2021accounting for 1298.8 MW. This paper presents a review of auction in various countries of South America in order to compare final prices for technology. Finally, this paper discusses perspectives for the energy sector in Colombia according to the implications of this auction.
The energy transition from fossil-fuel generators to renewable energies represents a paramount challenge. This is mainly due to the uncertainty and unpredictability associated with renewable resources. A greater flexibility is requested for power system operation to fulfill demand requirements considering security and economic restrictions. In particular, the use of gas-fired generators has increased to enhance system flexibility in response to the integration of renewable energy sources. This paper provides a comprehensive formulation for modeling a natural gas supply network to provide gas for thermal generators, considering the use of wind power sources for the operation of the electrical system over a 24-hour period. The results indicate the requirements of gas with different wind power level of integration. The model is evaluated on a network of 20 NG nodes and on a 24-bus IEEE RTS system with various operative settings during a 24-hour period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.