The Eigenstate Thermalization Hypothesis makes a prediction for the statistical distribution of matrix elements of simple operators in energy eigenstates of chaotic quantum systems. As a leading approximation, off-diagonal matrix elements are described by Gaussian random variables but higher-point correlation functions enforce non-Gaussian corrections which are further exponentially suppressed in the entropy. In this paper, we investigate non- Gaussian corrections to the statistical distribution of heavy-heavy-heavy OPE coefficients in chaotic two-dimensional conformal field theories. Using the Virasoro crossing kernels, we provide asymptotic formulas involving arbitrary numbers of OPE coefficients from modular invariance on genus-g surfaces. We find that the non-Gaussianities are further exponentially suppressed in the entropy, much like the ETH. We discuss the implication of these results for products of CFT partition functions in gravity and Euclidean wormholes. Our results suggest that there are new connected wormhole geometries that dominate over the genus-two wormhole.
We study extremal curves associated with a functional which is linear in the curve's torsion. The functional in question is known to capture the properties of entanglement entropy for two-dimensional conformal field theories with chiral anomalies and has potential applications in elucidating the equilibrium shape of elastic linear structures. We derive the equations that determine the shape of its extremal curves in general ambient spaces in terms of geometric quantities. We show that the solutions to these shape equations correspond to a three-dimensional version of Mathisson's helical motions for the centers of mass of spinning probes. Thereafter, we focus on the case of maximally symmetric spaces, where solutions correspond to cylindrical helices and find that the Lancret ratio of these equals the relative speed between the Mathisson-Pirani and the Tulczyjew-Dixon observers. Finally, we construct all possible helical motions in three-dimensional manifolds with constant negative curvature. In particular, we discover a rich space of helices in AdS 3 which we explore in
We present new asymptotic formulas for the distribution of OPE coefficients in conformal field theories. These formulas involve products of four or more coefficients and include light-light-heavy as well as heavy-heavy-heavy contributions. They are derived from crossing symmetry of the six and higher point functions on the plane and should be interpreted as non-Gaussianities in the statistical distribution of the OPE coefficients. We begin with a formula for arbitrary operator exchanges (not necessarily primary) valid in any dimension. This is the first asymptotic formula constraining heavy-heavy-heavy OPE coefficients in d > 2. For two-dimensional CFTs, we present refined asymptotic formulas stemming from exchanges of quasi-primaries as well as Virasoro primaries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.