Objectives
We used a screening strategy of global serum microRNA (miRNA) profiling, followed by a second stage of independent replication and exploration of liver expression of selected miRNAs to study: (1) the circulating miRNA signature associated with non-alcoholic fatty liver disease (NAFLD) progression and predictive power, (2) the role of miRNAs in disease biology and (3) the association between circulating miRNAs and features of the metabolic syndrome.
Methods
The study used a case-control design and included patients with NAFLD proven through biopsy and healthy controls.
Results
Among 84 circulating miRNAs analysed, miR-122, miR-192, miR-19a and miR-19b, miR-125b, and miR-375 were upregulated >2-fold (p<0.05) either in simple steatosis (SS) or non-alcoholic steatohepatitis (NASH). The most dramatic and significant fold changes were observed in the serum levels of miR-122 (7.2-fold change in NASH vs controls and 3.1-fold change in NASH vs SS) and miR-192 (4.4-fold change in NASH vs controls); these results were replicated in the validation set. The majority of serum miR-122 circulate in argonaute2-free forms. Circulating miR-19a/b and miR-125b were correlated with biomarkers of atherosclerosis. Liver miR-122 expression was 10-fold (p<0.03) downregulated in NASH compared with SS and was preferentially expressed at the edge of lipid-laden hepatocytes. In vitro exploration showed that overexpression of miR-122 enhances alanine aminotransferase activity.
Conclusions
miR-122 plays a role of physiological significance in the biology of NAFLD; circulating miRNAs mirror the histological and molecular events occurring in the liver. NAFLD has a distinguishing circulating miRNA profile associated with a global dysmetabolic disease state and cardiovascular risk.
In the context of an abnormal hepatic triglyceride accumulation, circulating aminotransferases rise as a consequence of the need for increased reactions of transamination to cope with the liver metabolic derangement that is associated with greater gluconeogenesis and insulin resistance. Hence, to maintain homeostasis, the liver upregulates these enzymes, leading to changes in the amounts of amino acids released into the circulation.
Current knowledge on the genetic basis of nonalcoholic fatty liver disease (NAFLD) suggests that variants contributing not only to the disease predisposition but histological severity as well are located in genes that regulate lipid metabolism. We explored the role of rs641738 C/T located in TMC4 (transmembrane channel-like 4) exon 1 (p.Gly17Glu) and 500 bases- downstream of MBOAT7 gene (TMC4/MBOAT7), in the genetic risk for developing NAFLD in a case-control study. Our sample included 634 individuals (372 patients with NAFLD diagnosed by liver biopsy and 262 control subjects); genotyping was performed by a Taqman assay. Genotype frequencies in controls (CC: 84, CT: 137, TT: 41) and patients (CC: 134, CT: 178, TT: 60) were in Hardy-Weinberg equilibrium; minor allele frequency 40.8%. Our sample had 84–99% power if an additive genetic model is assumed for estimated odds ratios of 1.3–1.5, respectively. We found no evidence of association between rs641738 and either NAFLD (Cochran-Armitage test for trend, p = 0.529) or the disease severity (p = 0.61). Low levels of MBOAT7 protein expression were found in the liver of patients with NAFLD, which were unrelated to the rs641738 genotypes. In conclusion, the role of rs641738 in the pathogenesis of NAFLD is inconclusive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.