In this work, hybrid hydrogels were prepared based on poly(acrylic acid-co-acrylamide) hydrogels (Gel) and self-assembled nanostructured polyaniline (PANI). These hybrid hydrogels were prepared by in situ UV-assisted aniline polymerization during hydrogel network formation in a controlled interfacial reaction. They were then tested as flexible quasi-solid electrolytes with a counter electrode in dye-sensitized solar cells. This electrolyte-counter electrode system was prepared on top of a titanium dioxide layer deposited on a transparent and conductive anode electrode (ITO). Three different nanostructured Gel-PANI hybrid hydrogels were fabricated by employing different PANI concentrations and used for constructing electrolyte-counter electrode systems that displayed conductivities between 0.003 S/cm and 0.02 S/cm. Dye-sensitized solar cells (DSSC) that had the configuration ITO/TiO 2 /Gel-PANI/ITO were prepared and tested using natural dye extracted from Myrciaria cauliflora. The energy conversion efficiency was evaluated under AM1.5 (100 mW/ cm 2) light irradiation and was found to reach values above 2.0%. The device's energy conversion efficiency was found to be higher than those of others with the same natural dye. The process proved to be fast and facile, and it utilized an inexpensive natural dye.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.