Arundo donax is a cane species with high growing productivity, and it is becoming an important source of biomass. The main objective of this study was to obtain fibreboards with high mechanical performance from A. donax without any added adhesive. Boards made without adhesive are free from formaldehyde emissions and consume no fossil resources. The characteristics of the obtained boards depended on the original material, steam explosion pre-treatments, and forming conditions (pressure, temperature, and pressing time). Production parameters were optimized. The effect of forming pressure on the physical and mechanical properties density, elastic modulus (MOE), modulus of rupture (MOR), tensile strength perpendicular to the faces (IB), thickness swelling, and water absorption of the obtained boards was studied. The European Norms (EN) methodologies were used to test the board specifications. Density, MOE, and MOR were modelled by a double reciprocal function. TS and WA were modelled with a reciprocal function in X. The boards obtained met and sometimes exceeded the requirements of these standards for the most demanding structural use.
This paper explores the possibility of producing all-lignocellulosic fiberboards from Arundo donax L. as a source of lignocellulosic fibers with no synthetic binders. This raw material was steam exploded with a thermomechanical aqueous vapor process in a batch reactor. The Arundo donax raw material and its obtained pulp were characterized in terms of chemical composition and the results were compared to other lignocellulosic materials. The chemical composition of steam exploded Arundo fibers showed high cellulose and a moderate lignin content suggesting it was a good raw material for fiberboard production. The all-lignocellulosic fiberboards were produced on laboratory scale; using the steam exploded Arundo donax by means of a wet process. The effects of pressing pressure on physical and mechanical properties were evaluated and the conditions that optimize the responses were found. The analyzed properties were density (d); water absorption (WA); thickness swelling (TS); modulus of elasticity (MOE); modulus of rupture (MOR); and internal bond strength (IB). The tested levels of the pressing pressure range from 0.35 to 15 MPa. The optimum IB; MOE; MOR; WA and TS were 1.28 MPa, 7439 MPa, 40.4 MPa, 17.6% and 13.3%, respectively. The obtained fiberboards were of very good quality and more than satisfy the requirements of the relevant standard specifications.
This paper addresses the impact of the particle initial wetting and the viscosity of the oil phase on the structure and rheological properties of direct (Oil/Water) and reverse (Water/Oil) Pickering emulsions. The emulsion structure was investigated via confocal microscopy and static light scattering. The flow and viscoelastic properties were probed by a stress-controlled rheometer. Partially hydrophobic silica particles have been employed at 1 and 4 wt.% to stabilize dodecane or paraffin-based emulsions at 20 vol.% of the dispersed phase. W/O emulsions were obtained when the particles were dispersed in the oily phase while O/W emulsions were prepared when the silica was introduced in the aqueous phase. We demonstrated that, although the particles adsorbed at the droplets interfaces for all the emulsions, their organization, the emulsion structure and their rheological properties depend in which phase they were previously dispersed in. We discuss these features as a function of the particle concentration and the oil viscosity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.