NONLINEAR DYNAMICS AND LIMITING REAGENT: A TRANSCRITICAL BIFURCATION EXAMPLE. The nonlinear analysis of a general mixed second order reaction was performed, aiming to explore some basic tools concerning the mathematics of nonlinear differential equations. Concepts of stability around fixed points based on linear stability analysis are introduced, together with phase plane and integral curves. The main focus is the chemical relationship between changes of limiting reagent and transcritical bifurcation, and the investigation underlying the conclusion.Keywords: nonlinear dynamics; limiting reagent; transcritical bifurcation.
INTRODUÇÃOA Dinâmica não-linear lida com a evolução temporal de sistemas cuja taxa de variação de uma ou mais variáveis é uma função não-linear da(s) mesma(s). Suas aplicações abrangem diversas áreas, como física, química, biologia, engenharia, economia, psicologia, entre outras.1 Na química o comportamento não-linear surge geralmente associado a equações do campo da cinética química, pois mesmo em reações simples termos quadráticos surgem como uma função da variação temporal das espécies envolvidas, mesmo em reações elementares. Embora a dinâmica destes processos geralmente sirva de ponte entre a Dinâmica não-linear e a Química, 1,9 mesmo sistemas cujas equações não levam a comportamento oscilatório podem fornecer informações relevantes acerca de processos químicos, como no emprego da equação logística na compreensão de processos eletroquí-micos.10 Adicionalmente é necessário, para fins didáticos, apresentar sistemas mais simples que mantenham a estrutura elementar da análise de sistemas não-lineares e estejam, de preferência, associados com o estudo de fenômenos químicos. Deste modo, pretende-se com este trabalho empregar alguns conceitos e ferramentas básicas usadas no estudo de sistemas que apresentam dinâmica não-linear na investigação da cinética de uma reação cuja lei de velocidade é dominada por uma etapa bimolecular. Mais especificamente, o estudo permite observar o natural surgimento do conceito de reagente limitante pela lei da ação das massas, como resultado da análise da estabilidade das soluções de equilíbrio da equação diferencial que descreve a reação. Este comportamento é claramente observado pela análise da dinâmica do sistema em função da variação da concentração inicial de um reagente em relação ao outro. Acredita-se que este exemplo possa servir de introdução para a abordagem não convencional deste tipo de análise em cursos de Química.
Atratores, fontes, estabilidade linear e bifurcaçãoConsidere uma equação diferencial que possui a seguinte forma:(1)Em que x(t) é uma variável dependente do tempo, como a concentração de alguma espécie química (ou alguma propriedade a ela associada), e f a função que descreve essa taxa de variação. Como f não apresenta dependência explícita com o tempo (pois neste caso seria f(x, t)), é chamada de equação autônoma. Caso uma condição inicial x 0 = x(t = 0) seja fornecida, tem-se um problema de valor inicial. Quando resolvido, ele fornece um co...