Background: In recent years, the application of nanotechnology in several fields of bioscience and biomedicine has been studied. The use of nanoparticles for the targeted delivery of substances has been given special attention and is of particular interest in the treatment of plant diseases. In this work both the penetration and the movement of iron-carbon nanoparticles in plant cells have been analyzed in living plants of Cucurbita pepo.
Pea (Pisum sativum L.) was the original model organism used in Mendel's discovery (1866) of the laws of inheritance, making it the foundation of modern plant genetics. However, subsequent progress in pea genomics has lagged behind many other plant species. Although the size and repetitive nature of the pea genome has so far restricted its sequencing, comprehensive genomic and post genomic resources already exist. These include BAC libraries, several types of molecular marker sets, both transcriptome and proteome datasets and mutant populations for reverse genetics. The availability of the full genome sequences of three legume species has offered significant opportunities for genome wide comparison revealing synteny and co-linearity to pea. A combination of a candidate gene and colinearity approach has successfully led to the identification of genes underlying agronomically important traits including virus resistances and plant architecture. Some of this knowledge has already been applied to marker assisted selection (MAS) programs, increasing precision and shortening the breeding cycle. Yet, complete translation of marker discovery to pea breeding is still to be achieved. Molecular analysis of pea collections has shown that although substantial variation is present within the cultivated genepool, wild material offers the possibility to incorporate novel traits that may have been inadvertently eliminated. Association mapping analysis of diverse pea germplasm promises to identify genetic variation related to desirable agronomic traits, which are historically difficult to breed for in a traditional manner. The availability of high throughput 'omics' methodologies offers great promise for the development of novel, highly accurate selective breeding tools for improved pea genotypes that are sustainable under current and future climates and farming systems.
Modern agriculture and conventional breeding and the liberal use of high inputs has resulted in the loss of genetic diversity and the stagnation of yields in cereals in less favourable areas. Increasingly landraces are being replaced by modern cultivars which are less resilient to pests, diseases and abiotic stresses and thereby losing a valuable source of germplasm for meeting the future needs of sustainable agriculture in the context of climate change. Where landraces persist there is concern that their potential is not fully realised. Much effort has gone into collecting, organising, studying and analysing landraces recently and we review the current status and potential for their improved deployment and exploitation, and incorporation of their positive qualities into new cultivars or populations for more sustainable agricultural production. In particular their potential as sources of novel disease and abiotic stress resistance genes or combination of genes if deployed appropriately, of phytonutrients accompanied with optimal micronutrient concentrations which can help alleviate aging-related and chronic diseases, and of nutrient use efficiency traits. We discuss the place of landraces in the origin of modern cereal crops and breeding of elite cereal cultivars, the importance of on-farm and ex situ diversity conservation; how modern genotyping approaches can help both conservation and exploitation; the importance of different phenotyping approaches; and whether legal issues associated with landrace marketing and utilisation need addressing. In this review of the current status and prospects for landraces of cereals in the context of sustainable agriculture, the major points are the following: (1) Landraces have very rich and complex ancestry representing variation in response to many diverse stresses and are vast resources for the development of future crops deriving many sustainable traits from their heritage. (2) There are many germplasm collections of landraces of the major cereals worldwide exhibiting much variation in valuable morphological, agronomic and biochemical traits. The germplasm has been characterised to variable degrees and in many different ways including molecular markers which can assist selection. (3) Much of this germplasm is being maintained both in long-term storage and on farm where it continues to evolve, both of which have their merits and problems. There is much concern about loss of variation, identification, description and accessibility of accessions despite international strategies for addressing these issues. (4) Developments in genotyping technologies are making the variation available in landraces ever more accessible. However, high quality, extensive and detailed, relevant and appropriate phenotyping needs to be associated with the genotyping to enable it to be exploited successfully. We also need to understand the complexity of the genetics of these desirable traits in
The results open a wide range of possibilities for using magnetic nanoparticles in general plant research and agronomy. The nanoparticles can be charged with different substances, introduced within the plants and, if necessary, concentrated into localized areas by using magnets. Also simple or more complex microscopical techniques can be used in localization studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.