Harnessing techniques from analog signal processing, we establish a new path for large-scale quantum computation.
We describe and implement a family of entangling gates activated by radio-frequency flux modulation applied to a tunable transmon that is statically coupled to a neighboring transmon. The effect of this modulation is the resonant exchange of photons directly between levels of the two-transmon system, obviating the need for mediating qubits or resonator modes and allowing for the full utilization of all qubits in a scalable architecture. The resonance condition is selective in both the frequency and amplitude of modulation and thus alleviates frequency crowding. We demonstrate the use of three such resonances to produce entangling gates that enable universal quantum computation: one iSWAP gate and two distinct controlled Z gates. We report interleaved randomized benchmarking results indicating gate error rates of 6% for the iSWAP (duration 135ns) and 9% for the controlled Z gates (durations 175 ns and 270 ns), limited largely by qubit coherence.A central challenge in building a scalable quantum computer with superconducting qubits is the execution of high-fidelity, two-qubit gates within an architecture containing many resonant elements. As more elements are added, or as the multiplicity of couplings between elements is increased, the frequency space of the design becomes crowded and device performance suffers. In architectures composed of transmon qubits [1], there are two main approaches to implementing two-qubit gates. The first utilizes fixed-frequency qubits with static couplings where the two-qubit operations are activated by applying transverse microwave drives [2][3][4][5][6][7][8]. While fixedfrequency qubits generally have long coherence times, this architecture requires satisfying stringent constraints on qubit frequencies and anharmonicities [5,6,8] which requires some tunability to scale to many qubits [9]. The second approach relies on frequency-tunable transmons, and two-qubit gates are activated by tuning qubits into and out of resonance with a particular transition [10][11][12][13][14][15][16]. However, tunability comes at the cost of additional decoherence channels, thus significantly limiting coherence times [17]. In this approach the delivery of shaped unbalanced control signals poses a challenge [15]. Such gates are furthermore sensitive to frequency crowdingavoiding unwanted crossings with neighboring qubit energy levels during gate operations limits the flexibility and connectivity of the architecture.An alternative to these approaches is to modulate a circuit's couplings or energy levels at a frequency corresponding to the detuning between particular energy levels of interest [18][19][20][21][22][23][24][25][26]. This enables an entangling gate between a qubit and a single resonator [21,22], a qubit and many resonator modes [26], two transmon qubits coupled by a tunable mediating qubit [16,25], or two tunable transmons coupled to a mediating resonator [23,24].Building on these earlier results, we implement two entangling gates, iSWAP and controlled Z (CZ), between a flux-tunable transmon an...
Charge carriers in graphene behave like massless Dirac fermions (MDFs) with linear energy-momentum dispersion , providing a condensed-matter platform for studying quasiparticles with relativistic-like features. Artificial graphene (AG)-a structure with an artificial honeycomb lattice-exhibits novel phenomena due to the tunable interplay between topology and quasiparticle interactions . So far, the emergence of a Dirac band structure supporting MDFs has been observed in AG using molecular , atomic and photonic systems , including those with semiconductor microcavities . Here, we report the realization of an AG that has a band structure with vanishing density of states consistent with the presence of MDFs. This observation is enabled by a very small lattice constant (a = 50 nm) of the nanofabricated AG patterns superimposed on a two-dimensional electron gas hosted by a high-quality GaAs quantum well. Resonant inelastic light-scattering spectra reveal low-lying transitions that are not present in the unpatterned GaAs quantum well. These excitations reveal the energy dependence of the joint density of states for AG band transitions. Fermi level tuning through the Dirac point results in a collapse of the density of states at low transition energy, suggesting the emergence of the MDF linear dispersion in the AG.
Numerous theoretical protocols have been developed for quantum information processing with dipole-coupled solid-state spins. Nitrogen vacancy (NV) centers in diamond have many of the desired properties, but a central challenge has been the positioning of NV centers at the nanometer scale that would allow for efficient and consistent dipolar couplings. Here we demonstrate a method for chip-scale fabrication of arrays of single NV centers with record spatial localization of about 10 nm in all three dimensions and controllable inter-NV spacing as small as 40 nm, which approaches the length scale of strong dipolar coupling. Our approach uses masked implantation of nitrogen through nanoapertures in a thin gold film, patterned via electron-beam lithography and dry etching. We verified the position and spin properties of the resulting NVs through wide-field super-resolution optically detected magnetic resonance imaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.