Hydatidosis is an endemic zoonosis in. Por este motivo el diagnóstico exige un alto grado de sospecha, ya que la sintomatología suele deberse a complicaciones, muchas veces fatales 6 . Presentamos el caso de un paciente con antecedentes de hidatidosis pulmonar antigua, quien quince años después, presentó un accidente vascular encefálico sin sintomatología cardiovascular asociada, encontrándose un quiste cardiaco en una ecocardiografía. Resaltamos la importancia del diagnóstico y tratamiento precoz y la utilidad de las técnicas de diagnóstico por imagen, por el alto riesgo que conlleva esta condición. Caso clínicoVarón de 48 años, oriundo de Marchigüe, VI Región de Chile, quien durante su vida laboral trabajó como faenador de corderos. Tenía antecedentes de hipertensión arterial, dislipidemia y un quiste hidatídico pulmonar operado en 1996. Quince años después, presentó un accidente vascular encefálico, sin referir otro tipo de sintomatología cardiovascular. Dentro del estudio etiológico se realizó un ecocardiograma y una tomografía computarizada de tórax (TAC) donde se evidenció una masa quística de 4 x 3 cm en el ventrículo izquierdo, sin signos de ruptura. Se realizó además una ecotomografía abdominal que descartó la presencia de quistes hepáticos. Tampoco tenía antecedentes o síntomas previos sugerentes de anafilaxia.Posteriormente, evolucionó con dolor precordial opresivo sin irradiación, de intensidad EVA 6/10. Evaluado por cardiología en su hospital base se indicó anticoagulación oral siendo derivado al Instituto Nacional del Tórax con la sospecha de hidatidosis cardiaca.El paciente ingresó en buenas condiciones generales, afebril y sin alteraciones hemodinámi-
prediction models of the prevalence of ACS and externally validate them in a large screening population. Methods: We conducted a systematic search of PubMed and EMBASE for prediction models of the prevalence of ACS 50%. We externally validated identified models for both the predicted outcome moderate (50%) and severe (70%) stenosis in a dataset of 596,469 individuals attending vascular screening clinics in the US and UK. We assessed discrimination with the area under receiver operating characteristic (AUROC) curve and calibration with calibration plots. Results: After screening 975 studies, six risk prediction models were identified. Three were developed to predict moderate and three severe ACS. Included predictors were age, sex, smoking, hypertension, hypercholesterolemia, diabetes, vascular and cerebrovascular disease, height, measured blood pressure, and blood lipids. In the external validation cohort, 11,178 (1.87%) participants had 50% ACS and 2,033 (0.34%) had 70% ACS. The AUROC curve of the best model was 0.75 (95% CI 0.75-0.75) for 50% ACS and 0.78 (95% CI 0.77-0.79) for 70% ACS. Using this risk prediction model, the observed prevalence of 50% ACS in the highest decile of risk was 6.54%, with a number needed to screen (NNS) of 15. The observed prevalence of 70% ACS in the highest decile of risk was 1.42%, with an NNS of 70. Screening these high-risk patients will identify 34.9% of the patients with 50% ACS and 41.7% with 70% ACS. Conclusion: Cohorts of patients at elevated risk of ACS can be identified reliably, with the prevalence of ACS in the highest risk decile threefold higher than in the overall population. A targeted screening program restricted to the 10% of the population at highest risk will identify more than1/3 of all significant stenoses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.