Background
Mechanical ventilation has side effects such as ventilator-induced diaphragm dysfunction, resulting in prolonged intensive care unit length of stays. Artificially evoked diaphragmatic muscle contraction may potentially maintain diaphragmatic muscle function and thereby ameliorate or counteract ventilator-induced diaphragm dysfunction. We hypothesized that bilateral non-invasive electromagnetic phrenic nerve stimulation (NEPNS) results in adequate diaphragm contractions and consecutively in effective tidal volumes.
Results
This single-centre proof-of-concept study was performed in five patients who were 30 [IQR 21–33] years old, 60% (n = 3) females and undergoing elective surgery with general anaesthesia. Following anaesthesia and reversal of muscle relaxation, patients received bilateral NEPNS with different magnetic field intensities (10%, 20%, 30%, 40%); the stimulation was performed bilaterally with dual coils (connected to one standard clinical magnetic stimulator), specifically designed for bilateral non-invasive electromagnetic nerve stimulation. The stimulator with a maximal output of 2400 Volt, 160 Joule, pulse length 160 µs at 100% intensity was limited to 50% intensity, i.e. each single coil had a maximal output of 0.55 Tesla and 1200 Volt. There was a linear relationship between dosage (magnetic field intensity) and effect (tidal volume, primary endpoint, p < 0.001). Mean tidal volume was 0.00, 1.81 ± 0.99, 4.55 ± 2.23 and 7.43 ± 3.06 ml/kg ideal body weight applying 10%, 20%, 30% and 40% stimulation intensity, respectively. Mean time to find an initial adequate stimulation point was 89 (range 15–441) seconds.
Conclusions
Bilateral non-invasive electromagnetic phrenic nerve stimulation generated a tidal volume of 3–6 ml/kg ideal body weight due to diaphragmatic contraction in lung-healthy anaesthetized patients. Further perspectives in critically ill patients should include assessment of clinical outcomes to confirm whether diaphragm contraction through non-invasive electromagnetic phrenic nerve stimulation potentially ameliorates or prevents diaphragm atrophy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.