Articular cartilage (AC) is a specialized connective tissue able to provide a low‐friction gliding surface supporting shock‐absorption, reducing stresses, and guaranteeing wear‐resistance thanks to its structure and mechanical and lubrication properties. Being an avascular tissue, AC has a limited ability to heal defects. Nowadays, conventional strategies show several limitations, which results in ineffective restoration of chondral defects. Several tissue engineering approaches have been proposed to restore the AC's native properties without reproducing its mechanical and lubrication properties yet. This work reports the fabrication of a bilayered structure made of gellan gum (GG) and poly (ethylene glycol) diacrylate (PEGDA), able to mimic the mechanical and lubrication features of both AC superficial and deep zones. Through appropriate combinations of GG and PEGDA, cartilage Young's modulus is effectively mimicked for both zones. Graphene oxide is used as a dopant agent for the superficial hydrogel layer, demonstrating a lower friction than the nondoped counterpart. The bilayered hydrogel's antiwear properties are confirmed by using a knee simulator, following ISO 14243. Finally, in vitro tests with human chondrocytes confirm the absence of cytotoxicity effects. The results shown in this paper open the way to a multilayered synthetic injectable or surgically implantable filler for restoring AC defects.
Scaffold-based
bone tissue engineering strategies fail to meet
the clinical need to fabricate patient-specific and defect shape-specific,
anatomically relevant load-bearing bone constructs. 3D bioprinting
strategies are gaining major interest as a potential alternative,
but design of a specific bioink is still a major challenge that can
modulate key signaling pathways to induce osteogenic differentiation
of progenitor cells, as well as offer appropriate microenvironment
to augment mineralization. In the present study, we developed silk
fibroin protein and gelatin-based conjugated bioink, which showed
localized presence and sustained release of calcium. Presence of 2.6
mM Ca2+ ions within the bioink could further induce enhanced
osteogenesis of Bone marrow derived progenitor cells (hMSCs) compared
to the bioink without calcium, or same concentration of calcium added
to the media, as evidenced by upregulated gene expression of osteogenic
markers. This study generated unprecedented mechanistic insights on
the role of fibroin-gelatin-CaCl2 bioink in modulating
expression of several proteins which are known to play crucial role
in bone regeneration as well as key signaling pathways such as β-catenin,
BMP signaling pathway, Parathyroid hormone-dependent signaling pathway,
Forkhead box O (FOXO) pathway, and Hippo pathways in hMSC-laden bioprinted
constructs.
Articular cartilage is known to have limited intrinsic self-healing capacity when a defect or a degeneration process occurs. Hydrogels represent promising biomaterials for cell encapsulation and injection in cartilage defects by creating an environment that mimics the cartilage extracellular matrix. The aim of this study is the analysis of two different concentrations (1:1 and 1:2) of VitroGel® (VG) hydrogels without (VG-3D) and with arginine-glycine-aspartic acid (RGD) motifs, (VG-RGD), verifying their ability to support chondrogenic differentiation of encapsulated human adipose mesenchymal stromal cells (hASCs). We analyzed the hydrogel properties in terms of rheometric measurements, cell viability, cytotoxicity, and the expression of chondrogenic markers using gene expression, histology, and immunohistochemical tests. We highlighted a shear-thinning behavior of both hydrogels, which showed good injectability. We demonstrated a good morphology and high viability of hASCs in both hydrogels. VG-RGD 1:2 hydrogels were the most effective, both at the gene and protein levels, to support the expression of the typical chondrogenic markers, including collagen type 2, SOX9, aggrecan, glycosaminoglycan, and cartilage oligomeric matrix protein and to decrease the proliferation marker MKI67 and the fibrotic marker collagen type 1. This study demonstrated that both hydrogels, at different concentrations, and the presence of RGD motifs, significantly contributed to the chondrogenic commitment of the laden hASCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.