Predictive coding is attractive for compression on board of spacecraft due to its low computational complexity, modest memory requirements, and the ability to accurately control quality on a pixel-by-pixel basis. Traditionally, predictive compression focused on the lossless and near-lossless modes of operation, where the maximum error can be bounded but the rate of the compressed image is variable. Rate control is considered a challenging problem for predictive encoders due to the dependencies between quantization and prediction in the feedback loop and the lack of a signal representation that packs the signal's energy into few coefficients. In this paper, we show that it is possible to design a rate control scheme intended for onboard implementation. In particular, we propose a general framework to select quantizers in each spatial and spectral region of an image to achieve the desired target rate while minimizing distortion. The rate control algorithm allows achieving lossy near-lossless compression and any in-between type of compression, e.g., lossy compression with a near-lossless constraint. While this framework is independent of the specific predictor used, in order to show its performance, in this paper, we tailor it to the predictor adopted by the CCSDS-123 lossless compression standard, obtaining an extension that allows performing lossless, near-lossless, and lossy compression in a single package. We show that the rate controller has excellent performance in terms of accuracy in the output rate, rate-distortion characteristics, and is extremely competitive with respect to state-of-the-art transform coding.Index Terms-Embedded systems, hyperspectral image coding, lossy compression predictive coding, rate control.
Sensor imperfections in the form of photoresponse nonuniformity (PRNU) patterns are a well-established fingerprinting technique to link pictures to the camera sensors that acquired them. The noise-like characteristics of the PRNU pattern make it a difficult object to compress, thus hindering many interesting applications that would require storage of a large number of fingerprints or transmission over a bandlimited channel for real-time camera matching. In this paper, we propose to use real-valued or binary random projections to effectively compress the fingerprints at a small cost in terms of matching accuracy. The performance of randomly projected fingerprints is analyzed from a theoretical standpoint and experimentally verified on databases of real photographs. Practical issues concerning the complexity of implementing random projections are also addressed using circulant matrices.Index Terms-Random projections, PRNU, image forensics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.