Abstract-Transform-based lossy compression has a huge potential for hyperspectral data reduction. Hyperspectral data are 3-D, and the nature of their correlation is different in each dimension. This calls for a careful design of the 3-D transform to be used for compression. In this paper, we investigate the transform design and rate allocation stage for lossy compression of hyperspectral data. First, we select a set of 3-D transforms, obtained by combining in various ways wavelets, wavelet packets, the discrete cosine transform, and the Karhunen-Loève transform (KLT), and evaluate the coding efficiency of these combinations. Second, we propose a low-complexity version of the KLT, in which complexity and performance can be balanced in a scalable way, allowing one to design the transform that better matches a specific application. Third, we integrate this, as well as other existing transforms, in the framework of Part 2 of the Joint Photographic Experts Group (JPEG) 2000 standard, taking advantage of the high coding efficiency of JPEG 2000, and exploiting the interoperability of an international standard. We introduce an evaluation framework based on both reconstruction fidelity and impact on image exploitation, and evaluate the proposed algorithm by applying this framework to AVIRIS scenes. It is shown that the scheme based on the proposed low-complexity KLT significantly outperforms previous schemes as to rate-distortion performance. As for impact on exploitation, we consider multiclass hard classification, spectral unmixing, binary classification, and anomaly detection as benchmark applications.
Recent advent of graph signal processing (GSP) has spurred intensive studies of signals that live naturally on irregular data kernels described by graphs (e.g., social networks, wireless sensor networks). Though a digital image contains pixels that reside on a regularly sampled 2D grid, if one can design an appropriate underlying graph connecting pixels with weights that reflect the image structure, then one can interpret the image (or image patch) as a signal on a graph, and apply GSP tools for processing and analysis of the signal in graph spectral domain. In this article, we overview recent graph spectral techniques in GSP specifically for image / video processing. The topics covered include image compression, image restoration, image filtering and image segmentation.
We propose a novel multimedia security framework based on a modification of the arithmetic coder, which is used by most international image and video coding standards as entropy coding stage. In particular, we introduce a randomized arithmetic coding paradigm, which achieves encryption by inserting some randomization in the arithmetic coding procedure; notably, and unlike previous works on encryption by arithmetic coding, this is done at no expense in terms of coding efficiency.The proposed technique can be applied to any multimedia coder employing arithmetic coding; in this paper we describe an implementation tailored to the JPEG 2000 standard. The proposed approach turns out to be robust towards attempts to estimating the image or discovering the key, and allows very flexible protection procedures at the code-block level, allowing to perform total and selective encryption, as well as conditional access.
While every network node only relays messages in a traditional communication system, the recent network coding (NC) paradigm proposes to implement simple in-network processing with packet combinations in the nodes. NC extends the concept of "encoding" a message beyond source coding (for compression) and channel coding (for protection against errors and losses). It has been shown to increase network throughput compared to traditional networks implementation, to reduce delay and to provide robustness to transmission errors and network dynamics. These features are so appealing for multimedia applications that they have spurred a large research effort towards the development of multimedia-specific NC techniques. This paper reviews the recent work in NC for multimedia applications and focuses on the techniques that fill the gap between NC theory and practical applications. It outlines the benefits of NC and presents the open challenges in this area. The paper initially focuses on multimedia-specific aspects of network coding, in particular delay, in-network error control, and media-specific error control. These aspects permit to handle varying network conditions as well as client heterogeneity, which are critical to the design and deployment of multimedia systems. After introducing these general concepts, the paper reviews in detail two applications that lend themselves naturally to NC via the cooperation and broadcast models, namely peer-to-peer multimedia streaming and wireless networking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.