Abstract-Inverse imaging problems are inherently underdetermined, and hence it is important to employ appropriate image priors for regularization. One recent popular priorthe graph Laplacian regularizer-assumes that the target pixel patch is smooth with respect to an appropriately chosen graph. However, the mechanisms and implications of imposing the graph Laplacian regularizer on the original inverse problem are not well understood. To address this problem, in this paper we interpret neighborhood graphs of pixel patches as discrete counterparts of Riemannian manifolds and perform analysis in the continuous domain, providing insights into several fundamental aspects of graph Laplacian regularization for image denoising. Specifically, we first show the convergence of the graph Laplacian regularizer to a continuous-domain functional, integrating a norm measured in a locally adaptive metric space. Focusing on image denoising, we derive an optimal metric space assuming nonlocal self-similarity of pixel patches, leading to an optimal graph Laplacian regularizer for denoising in the discrete domain. We then interpret graph Laplacian regularization as an anisotropic diffusion scheme to explain its behavior during iterations, e.g., its tendency to promote piecewise smooth signals under certain settings. To verify our analysis, an iterative image denoising algorithm is developed. Experimental results show that our algorithm performs competitively with state-of-the-art denoising methods such as BM3D for natural images, and outperforms them significantly for piecewise smooth images.
Piecewise smooth (PWS) images (e.g., depth maps or animation images) contain unique signal characteristics such as sharp object boundaries and slowly varying interior surfaces. Leveraging on recent advances in graph signal processing, in this paper, we propose to compress the PWS images using suitable graph Fourier transforms (GFTs) to minimize the total signal representation cost of each pixel block, considering both the sparsity of the signal's transform coefficients and the compactness of transform description. Unlike fixed transforms, such as the discrete cosine transform, we can adapt GFT to a particular class of pixel blocks. In particular, we select one among a defined search space of GFTs to minimize total representation cost via our proposed algorithms, leveraging on graph optimization techniques, such as spectral clustering and minimum graph cuts. Furthermore, for practical implementation of GFT, we introduce two techniques to reduce computation complexity. First, at the encoder, we low-pass filter and downsample a high-resolution (HR) pixel block to obtain a low-resolution (LR) one, so that a LR-GFT can be employed. At the decoder, upsampling and interpolation are performed adaptively along HR boundaries coded using arithmetic edge coding, so that sharp object boundaries can be well preserved. Second, instead of computing GFT from a graph in real-time via eigen-decomposition, the most popular LR-GFTs are pre-computed and stored in a table for lookup during encoding and decoding. Using depth maps and computer-graphics images as examples of the PWS images, experimental results show that our proposed multiresolution-GFT scheme outperforms H.264 intra by 6.8 dB on average in peak signal-to-noise ratio at the same bit rate.
Recent advent of graph signal processing (GSP) has spurred intensive studies of signals that live naturally on irregular data kernels described by graphs (e.g., social networks, wireless sensor networks). Though a digital image contains pixels that reside on a regularly sampled 2D grid, if one can design an appropriate underlying graph connecting pixels with weights that reflect the image structure, then one can interpret the image (or image patch) as a signal on a graph, and apply GSP tools for processing and analysis of the signal in graph spectral domain. In this article, we overview recent graph spectral techniques in GSP specifically for image / video processing. The topics covered include image compression, image restoration, image filtering and image segmentation.
Abstract-While much of multiview video coding focuses on the rate-distortion performance of compressing all frames of all views for storage or non-interactive video delivery over networks, we address the problem of designing a frame structure to enable interactive multiview streaming, where clients can interactively switch views during video playback. Thus, as a client is playing back successive frames (in time) for a given view, it can send a request to the server to switch to a different view while continuing uninterrupted temporal playback. Noting that standard tools for random access (i.e., I-frame insertion) can be bandwidth-inefficient for this application, we propose a redundant representation of I-, P-, and "merge" frames, where each original picture can be encoded into multiple versions, appropriately trading off expected transmission rate with storage, to facilitate view switching. We first present ad hoc frame structures with good performance when the view-switching probabilities are either very large or very small. We then present optimization algorithms that generate more general frame structures with better overall performance for the general case. We show in our experiments that we can generate redundant frame structures offering a range of tradeoff points between transmission and storage, e.g., outperforming simple I-frame insertion structures by up to 45% in terms of bandwidth efficiency at twice the storage cost.Index Terms-Media interaction, multiview video coding, video streaming.
Blind image deblurring, i.e., deblurring without knowledge of the blur kernel, is a highly ill-posed problem. The problem can be solved in two parts: i) estimate a blur kernel from the blurry image, and ii) given estimated blur kernel, deconvolve blurry input to restore the target image. In this paper, we propose a graph-based blind image deblurring algorithm by interpreting an image patch as a signal on a weighted graph. Specifically, we first argue that a skeleton image-a proxy that retains the strong gradients of the target but smooths out the details-can be used to accurately estimate the blur kernel and has a unique bi-modal edge weight distribution. Then, we design a reweighted graph total variation (RGTV) prior that can efficiently promote a bi-modal edge weight distribution given a blurry patch. Further, to analyze RGTV in the graph frequency domain, we introduce a new weight function to represent RGTV as a graph l1-Laplacian regularizer. This leads to a graph spectral filtering interpretation of the prior with desirable properties, including robustness to noise and blur, strong piecewise smooth (PWS) filtering and sharpness promotion. Minimizing a blind image deblurring objective with RGTV results in a non-convex non-differentiable optimization problem. We leverage the new graph spectral interpretation for RGTV to design an efficient algorithm that solves for the skeleton image and the blur kernel alternately. Specifically for Gaussian blur, we propose a further speedup strategy for blind Gaussian deblurring using accelerated graph spectral filtering. Finally, with the computed blur kernel, recent non-blind image deblurring algorithms can be applied to restore the target image. Experimental results demonstrate that our algorithm successfully restores latent sharp images and outperforms state-of-the-art methods quantitatively and qualitatively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.