Attention deficit/hyperactivity disorder (ADHD) is one of the most common child psychiatric disorders, and is often treated with stimulant medication. Nonpharmacological treatments include dietary supplementation with omega-3 fatty acids, although their effectiveness remains to be shown conclusively. In this study, we investigated the effects of dietary omega-3 fatty acid supplementation on ADHD symptoms and cognitive control in young boys with and without ADHD. A total of 40 boys with ADHD, aged 8–14 years, and 39 matched, typically developing controls participated in a 16-week double-blind randomized placebo-controlled trial. Participants consumed 10 g of margarine daily, enriched with either 650 mg of eicosapentaenoic acid (EPA)/docosahexaenoic acid (DHA) each or placebo. Baseline and follow-up assessments addressed ADHD symptoms, fMRI of cognitive control, urine homovanillic acid, and cheek cell phospholipid sampling. EPA/DHA supplementation improved parent-rated attention in both children with ADHD and typically developing children. Phospholipid DHA level at follow-up was higher for children receiving EPA/DHA supplements than placebo. There was no effect of EPA/DHA supplementation on cognitive control or on fMRI measures of brain activity. This study shows that dietary supplementation with omega-3 fatty acids reduces symptoms of ADHD, both for individuals with ADHD and typically developing children. This effect does not appear to be mediated by cognitive control systems in the brain, as no effect of supplementation was found here. Nonetheless, this study offers support that omega-3 supplementation may be an effective augmentation for pharmacological treatments of ADHD (NCT01554462: The Effects of EPA/DHA Supplementation on Cognitive Control in Children with ADHD; http://clinicaltrials.gov/show/NCT01554462).
Background: Attention deficit/hyperactivity disorder (ADHD) has frequently been associated with changes in resting-state functional connectivity, and decreased white matter (WM) integrity. In the current study, we investigated functional connectivity within Default Mode and frontal control resting-state networks (RSNs) in children with and without ADHD. We hypothesized the RSNs of interest would show a pattern of impaired functional integration and segregation and corresponding changes in WM structure. Methods: Resting-state fMRI and diffusion-weighted imaging data were acquired from 35 participants with ADHD and 36 matched typically developing peers, aged 6 through 18 years. Functional connectivity was assessed using independent component analysis. Network topology and WM connectivity were further investigated using graph theoretical measures and tract-based spatial statistics (TBSS). Results: Resting-state fMRI analyses showed increased functional connectivity in right inferior frontal gyrus (IFG), and bilateral medial prefrontal cortex (mPFC) within the Default Mode and frontal control networks. Furthermore, a more diffuse spatial pattern of functional connectivity was found in children with ADHD. We found no group differences in structural connectivity as assessed with TBSS or graph theoretical measures. Conclusions: Resting-state networks show a more diffuse pattern of connectivity in children with ADHD. The increases in functional connectivity in right IFG and bilateral mPFC in children with ADHD may reflect reduced or delayed functional segregation of prefrontal brain regions. As these functional changes were not accompanied by changes in WM, they may precede the development of the frequently reported changes in WM structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.