In this paper we present a new expert knowledge based clinical decision support system for prediction of intensive care units outcome based on the physiological measurements collected during the first 48 hours of the patient's admission to the ICU. The developed CDSS algorithm is composed of several stages. First, we categorize the collected data based on the physiological organ that they represent. We then extract clinically relevant features from each data category and then rank these features based on their mutual information with the outcome. Then, we design an artificial neural network to serve as a classifier to detect patients at high risk of critical deterioration. We use the eight-fold cross validation method to test the developed CDSS classifier. The results from the classification show that the newly designed CDSS outperforms the widely used acuity scoring systems, SOFA and SAPS-III. The F-score classification result of our developed algorithms is 42% while the F-score results for SOFA and SAPS-III are 26% and 29% respectively.
Prior work has documented that Support Vector Machine (SVM) classifiers can be powerful tools in predicting clinical outcomes of complex diseases such as Periventricular Leukomalacia (PVL). Our previous study showed that SVM performance can be improved significantly by optimizing the supervised training set used during the learning stage of the overall SVM algorithm. This study fully develops the initial idea using the reliable Leave-One-Out Cross-validation (LOOCV) technique. The work presented in this paper confirms previous results and improves the performance of the SVM even further. In addition, using the LOOCV technique, the computational time is decreased and the structure of the algorithm simplified, making this framework more feasible. Furthermore, we evaluate the performance of the resulting optimized SVM classifier on an unseen set of data. This demonstrates that the developed SVM algorithm outperforms normal SVM type classifiers without any loss of generalization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.