Little is known about the influence that environmental stressors may have on genome-wide methylation patterns, and to what extent epigenetics may be involved in environmental stress response. Yet, studies of methylation patterns under stress could provide crucial insights on stress response and toxicity pathways. Here, we focus on genome-wide methylation patterns in the microcrustacean Daphnia magna, a model organism in ecotoxicology and risk assessment, exposed to the toxic cyanobacterium Microcystis aeruginosa. Bisulfite sequencing of exposed and control animals highlighted differential methylation patterns in Daphnia upon exposure to Microcystis primarily in exonic regions. These patterns are enriched for serine/threonine amino acid codons and genes related to protein synthesis, transport and degradation. Furthermore, we observed that genes with differential methylation corresponded well with genes susceptible to alternative splicing in response to Microcystis stress. Overall, our results suggest a complex mechanistic response in Daphnia characterized by interactions between DNA methylation and gene regulation mechanisms. These results underscore that DNA methylation is modulated by environmental stress and can also be an integral part of the toxicity response in our study species.
The microRNA (miRNA) pathway is well established to be involved in host-pathogen interactions. As key insect pollinators, bees are suffering from widely spreading viruses, especially honeybees and bumblebees. In order to better understand bee-virus interaction, we comparatively analyzed the involvement of the bumblebee miRNA pathway upon infection by two different viruses. In our setup, an avirulent infection is induced by slow bee paralysis virus (SBPV) and a virulent infection is induced by Israeli acute paralysis virus (IAPV). Our results showed the increased expressions of dicer-1 and ago-1 upon SBPV infection. There were 17 and 12 bumblebee miRNAs differentially expressed upon SBPV and IAPV infections, respectively. These results may indicate the involvement of the host miRNA pathway in bumblebee-virus interaction. However, silencing of dicer-1 did not influence the genome copy number of SBPV. Target prediction for these differentially expressed miRNAs showed their possible involvement in targeting viral genomic RNA and in the regulation of networks in bumblebee. Our study opens a new insight into bee-virus interaction meditated by host miRNAs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.