Dual activation of the glucagon-like peptide 1 (GLP-1) and glucagon receptor has the potential to lead to a novel therapy principle for the treatment of diabesity. Here, we report a series of novel peptides with dual activity on these receptors that were discovered by rational design. On the basis of sequence analysis and structure-based design, structural elements of glucagon were engineered into the selective GLP-1 receptor agonist exendin-4, resulting in hybrid peptides with potent dual GLP-1/glucagon receptor activity. Detailed structure-activity relationship data are shown. Further modifications with unnatural and modified amino acids resulted in novel metabolically stable peptides that demonstrated a significant dose-dependent decrease in blood glucose in chronic studies in diabetic db/db mice and reduced body weight in diet-induced obese (DIO) mice. Structural analysis by NMR spectroscopy confirmed that the peptides maintain an exendin-4-like structure with its characteristic tryptophan-cage fold motif that is responsible for favorable chemical and physical stability.
Using a focused screening approach, acyl ureas have been discovered as a new class of inhibitors of human liver glycogen phosphorylase (hlGPa). The X-ray structure of screening hit 1 (IC50 = 2 microM) in a complex with rabbit muscle glycogen phosphorylase b reveals that 1 binds at the AMP site, the main allosteric effector site of the dimeric enzyme. A first cycle of chemical optimization supported by X-ray structural data yielded derivative 21, which inhibited hlGPa with an IC50 of 23 +/- 1 nM, but showed only moderate cellular activity in isolated rat hepatocytes (IC50 = 6.2 microM). Further optimization was guided by (i) a 3D pharmacophore model that was derived from a training set of 24 compounds and revealed the key chemical features for the biological activity and (ii) the 1.9 angstroms crystal structure of 21 in complex with hlGPa. A second set of compounds was synthesized and led to 42 with improved cellular activity (hlGPa IC50 = 53 +/- 1 nM; hepatocyte IC50 = 380 nM). Administration of 42 to anaesthetized Wistar rats caused a significant reduction of the glucagon-induced hyperglycemic peak. These findings are consistent with the inhibition of hepatic glycogenolysis and support the use of acyl ureas for the treatment of type 2 diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.