Certain proteins contain subunits that enable their active translocation across the plasma membrane into cells. In the specific case of HIV-1, this subunit is the basic domain Tat49-57 (RKKRRQRRR). To establish the optimal structural requirements for this translocation process, and thereby to develop improved molecular transporters that could deliver agents into cells, a series of analogues of Tat49-57 were prepared and their cellular uptake into Jurkat cells was determined by flow cytometry. All truncated and alaninesubstituted analogues exhibited diminished cellular uptake, suggesting that the cationic residues of Tat49-57 play a principal role in its uptake. Charge alone, however, is insufficient for transport as oligomers of several cationic amino acids (histidine, lysine, and ornithine) are less effective than Tat49-57 in cellular uptake. In contrast, a 9-mer of L-arginine (R9) was 20-fold more efficient than Tat49-57 at cellular uptake as determined by Michaelis-Menton kinetic analysis. The D-arginine oligomer (r9) exhibited an even greater uptake rate enhancement (>100-fold). Collectively, these studies suggest that the guanidinium groups of Tat49-57 play a greater role in facilitating cellular uptake than either charge or backbone structure. Based on this analysis, we designed and synthesized a class of polyguanidine peptoid derivatives. Remarkably, the subset of peptoid analogues containing a six-methylene spacer between the guanidine head group and backbone (N-hxg), exhibited significantly enhanced cellular uptake compared to Tat49-57 and even to r9. Overall, a transporter has been developed that is superior to Tat49-57, protease resistent, and more readily and economically prepared.
This Account provides an overview and examples of function-oriented synthesis (FOS) and its increasingly important role in producing therapeutic leads that can be made in a step-economical fashion. Biologically active natural product leads often suffer from several deficiencies. Many are scarce or difficult to obtain from natural sources. Often, they are highly complex molecules and thus not amenable to a practical synthesis that would impact supply. Most are not optimally suitable for human therapeutic use. The central principle of FOS is that the function of a biologically active lead structure can be recapitulated, tuned, or greatly enhanced with simpler scaffolds designed for ease of synthesis and also synthetic innovation. This approach can provide practical access to new (designed) structures with novel activities while at the same time allowing for synthetic innovation by target design. This FOS approach has been applied to a number of therapeutically important natural product leads. For example, bryostatin is a unique natural product anticancer lead that restores apoptosis in cancer cells, reverses multidrug resistance, and bolsters the immune system. Remarkably, it also improves cognition and memory in animals. We have designed and synthesized simplified analogs of bryostatin that can be made in a practical fashion (pilot scale) and are superior to bryostatin in numerous assays including growth inhibition in a variety of human cancer cell lines and in animal models. Laulimalide is another exciting anticancer lead that stabilizes microtubules, like paclitaxel, but unlike paclitaxel, it is effective against multidrug-resistant cell lines. Laulimalide suffers from availability and stability problems, issues that have been addressed using FOS through the design and synthesis of stable and efficacious laulimalide analogs. Another FOS program has been directed at the design and synthesis of drug delivery systems for enabling or enhancing the uptake of drugs or drug candidates into cells and tissue. We have generated improved transporters that can deliver agents in a superior fashion compared with naturally occurring cell-penetrating peptides and that can be synthesized in a practical and step-economical fashion. The use of FOS has allowed for the translation of exciting, biologically active natural product leads into simplified analogs with superior function. This approach enables the development of synthetically innovative strategies while targeting therapeutically novel structures.
The results described herein support a mechanistic hypothesis for how guanidine-rich transporters attached to small cargos (MW ca. <3000) can migrate across the lipid membrane of a cell and directly enter the cytosol. Arginine oligomers are found to partition almost completely into the aqueous layer of a water-octanol bilayer. However, when the same partitioning experiment is conducted in the presence of sodium laurate, a representative negatively charged membrane constituent, the arginine oligomer partitions almost completely (>95%) into the octanol layer. In contrast, ornithine oligomers partition almost exclusively into the water layer with and without added sodium laurate. The different partitioning between guanidinium-rich and ammonium-rich oligomers in the presence of sodium laurate is consistent with the ability of the former to form a bidentate hydrogen bonded ion pair. Mono- and dimethylated arginine oligomers, which like ornithine can only efficiently form monodentate hydrogen bonds, were prepared and found to exhibit poor cellular uptake. Ion pair formation converts a once water-soluble agent to a lipid-soluble agent, thereby reducing the energetic penalty for passage of guanidine-rich transporters through the lipid bilayer. Uptake of guanidine-rich transporters is known to be an energy-dependent process, and this requirement for cellular ATP is now rationalized by the inhibition of guanidine-rich transporter uptake in the presence of agents that reduce the membrane potential. Specifically, incubation of cells in buffers with high potassium ion concentrations or pretreatment of cells with gramicidin A reduces the cellular uptake of Fl-aca-arg8-CONH2 by >90%. Furthermore, the reciprocal experiment of hyperpolarizing the cell with valinomycin increased uptake by >1.5 times. In summary, we propose that the water-soluble, positively charged guanidinium headgroups of the transporter form bidentate hydrogen bonds with H-bond acceptor functionality on the cell surface. The resultant ion pair complexes partition into the lipid bilayer and migrate across at a rate related to the membrane potential. The complex dissociates on the inner leaf of the membrane, and the transporter enters the cytosol. This hypothesis does not preclude uptake by other mechanisms, including endocytosis, which is likely to dominate with large cargos.
Many systemically effective drugs such as cyclosporin A are ineffective topically because of their poor penetration into skin. To surmount this problem, we conjugated a heptamer of arginine to cyclosporin A through a pH-sensitive linker to produce R7-CsA. In contrast to unmodified cyclosporin A, which fails to penetrate skin, topically applied R7-CsA was efficiently transported into cells in mouse and human skin. R7-CsA reached dermal T lymphocytes and inhibited cutaneous inflammation. These data establish a general strategy for enhancing delivery of poorly absorbed drugs across tissue barriers and provide a new topical approach to the treatment of inflammatory skin disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.