The results described herein support a mechanistic hypothesis for how guanidine-rich transporters attached to small cargos (MW ca. <3000) can migrate across the lipid membrane of a cell and directly enter the cytosol. Arginine oligomers are found to partition almost completely into the aqueous layer of a water-octanol bilayer. However, when the same partitioning experiment is conducted in the presence of sodium laurate, a representative negatively charged membrane constituent, the arginine oligomer partitions almost completely (>95%) into the octanol layer. In contrast, ornithine oligomers partition almost exclusively into the water layer with and without added sodium laurate. The different partitioning between guanidinium-rich and ammonium-rich oligomers in the presence of sodium laurate is consistent with the ability of the former to form a bidentate hydrogen bonded ion pair. Mono- and dimethylated arginine oligomers, which like ornithine can only efficiently form monodentate hydrogen bonds, were prepared and found to exhibit poor cellular uptake. Ion pair formation converts a once water-soluble agent to a lipid-soluble agent, thereby reducing the energetic penalty for passage of guanidine-rich transporters through the lipid bilayer. Uptake of guanidine-rich transporters is known to be an energy-dependent process, and this requirement for cellular ATP is now rationalized by the inhibition of guanidine-rich transporter uptake in the presence of agents that reduce the membrane potential. Specifically, incubation of cells in buffers with high potassium ion concentrations or pretreatment of cells with gramicidin A reduces the cellular uptake of Fl-aca-arg8-CONH2 by >90%. Furthermore, the reciprocal experiment of hyperpolarizing the cell with valinomycin increased uptake by >1.5 times. In summary, we propose that the water-soluble, positively charged guanidinium headgroups of the transporter form bidentate hydrogen bonds with H-bond acceptor functionality on the cell surface. The resultant ion pair complexes partition into the lipid bilayer and migrate across at a rate related to the membrane potential. The complex dissociates on the inner leaf of the membrane, and the transporter enters the cytosol. This hypothesis does not preclude uptake by other mechanisms, including endocytosis, which is likely to dominate with large cargos.
The interactions between various functionalized carbon nanotubes and several types of human cancer cells are explored. We have prepared modified nanotubes and have shown that these can be derivatized in a way that enables attachment of small molecules and of proteins, the latter through a novel noncovalent association. The functionalized carbon nanotubes enter nonadherent human cancer cells as well as adherent cell lines (CHO and 3T3) and by themselves are not toxic. While the fluoresceinated protein streptavidin (MW approximately 60 kD) by itself does not enter cells, it readily enters cells when complexed to a nanotube-biotin transporter and exhibits dose-dependent cytotoxicity. The uptake pathway is consistent with adsorption-mediated endocytosis. The use of carbon nanotubes as molecular transporters could be exploited for various cargos. The biocompatibility and unique physical, electrical, optical, and mechanical properties of nanotubes provide the basis for new classes of materials for drug, protein, and gene delivery applications.
Molecular transporters have the ability to deliver drugs and probe molecules into cells and tissues irrespective of their physical properties. We now report the design, synthesis, and biological evaluation of a new family of molecular transporters, guanidinylated oligocarbamates that enable exceptionally efficient uptake into cells and tissues. The synthesis features a solid-phase stepwise oligomerization to obtain the oligocarbamates and a single step perguanidinylation for the facile introduction of up to nine guanidinium groups. The oligocarbamate 9-mer is found to be among the most efficient transporters known, entering cells faster than even d-Arg9 and HIV-1 Tat49-57. Significantly, this new family of transporters also enables uptake into the formidable skin barrier of a probe molecule that by itself does not penetrate skin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.