Greenhouse gas (GHG) emissions need to be reduced to limit global warming. Plastic production requires carbon raw materials and energy that are associated today with predominantly fossil raw materials and fossil GHG emissions. Worldwide, the plastic demand is increasing annually by 4%. Recycling technologies can help save or reduce GHG emissions, but they require comparative assessment. Thus, we assess mechanical recycling, chemical recycling by means of pyrolysis and a consecutive, complementary combination of both concerning Global Warming Potential (GWP) [CO2e], Cumulative Energy Demand (CED) [MJ/kg], carbon efficiency [%], and product costs [€] in a process‐oriented approach and within defined system boundaries. The developed techno‐economic and environmental assessment approach is demonstrated in a case study on recycling of separately collected mixed lightweight packaging (LWP) waste in Germany. In the recycling paths, the bulk materials polypropylene (PP), polyethylene (PE), polyvinylchloride (PVC), and polystyrene (PS) are assessed. The combined mechanical and chemical recycling (pyrolysis) of LWP waste shows considerable saving potentials in GWP (0.48 kg CO2e/kg input), CED (13.32 MJ/kg input), and cost (0.14 €/kg input) and a 16% higher carbon efficiency compared to the baseline scenario with state‐of‐the‐art mechanical recycling in Germany. This leads to a combined recycling potential between 2.5 and 2.8 million metric tons/year that could keep between 0.8 and 2 million metric tons/year additionally in the (circular) economy instead of incinerating them. This would be sufficient to reach both EU and German recycling rate targets (EC 2018). This article met the requirements for a gold‐silver JIE data openness badge described at http://jie.click/badges.
Biofuels of the second generation can contribute significantly to the replacement of the currently used fossil energy carriers for transportation fuel production. The lignocellulosic biomass residues used do not compete with food and feed production, but have to be collected from wide‐spread areas for industrial large‐scale use. The two‐stage gasification concept bioliq offers a solution to this problem. It aims at the conversion of low‐grade residual biomass from agriculture and forestry into synthetic fuels and chemicals. Central element of the bioliq process development is the 2–5 MW pilot plant along the complete process chain: fast pyrolysis for pretreatment of biomass to obtain an energy dense, liquid intermediate fuel, high‐pressure entrained flow gasification providing low methane synthesis gas free of tar, hot synthesis gas cleaning to separate acid gases, and contaminants as well as methanol/dimethyl ether and subsequent following gasoline synthesis. After construction and commissioning of the individual process steps with partners from industry, first production of synthetic fuel was successfully achieved in 2014. In addition to pilot plant operation for technology demonstration, a research and development network has been established providing the scientific basis for optimization and further development of the bioliq process as well as to explore new applications of the technologies and products involved. WIREs Energy Environ 2017, 6:e236. doi: 10.1002/wene.236
This article is categorized under:
Bioenergy > Science and Materials
Bioenergy > Systems and Infrastructure
Chemical recycling of plastic wastes can be a useful complement to mechanical recycling to achieve the required plastics recycling rates and to establish a circular economy that is climate neutral and resource‐efficient. Different mixed plastic wastes that are subject to future recycling efforts are studied under uniform conditions of intermediate pyrolysis characterized by a medium heating rate and pyrolysis temperature. Product distributions and selected product properties are determined, and process mass and energy balances are derived. Product yields and compositions are highly dependent on the waste pyrolyzed. The results show that pyrolysis is a suitable process to recover chemical feedstock from various complex mixed plastic wastes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.