Chemical recycling of plastic wastes can be a useful complement to mechanical recycling to achieve the required plastics recycling rates and to establish a circular economy that is climate neutral and resource‐efficient. Different mixed plastic wastes that are subject to future recycling efforts are studied under uniform conditions of intermediate pyrolysis characterized by a medium heating rate and pyrolysis temperature. Product distributions and selected product properties are determined, and process mass and energy balances are derived. Product yields and compositions are highly dependent on the waste pyrolyzed. The results show that pyrolysis is a suitable process to recover chemical feedstock from various complex mixed plastic wastes.
The global economy and its production chains must move away from petroleum-based products, to achieve this goal, alternative carbon feedstocks need to be established. One area of concern is sustainable production of synthetic lubricants. A lubricating oil can be described as a high boiling point (>340 °C) liquid with solidification at least below room temperature. Historically, many lubricants have been produced from petroleum waxes via solvent or catalytic dewaxing. In this study, catalytic dewaxing was applied to potential climate neutral feedstocks. One lubricant was produced via Fischer–Tropsch (FT) synthesis and the other lubricant resulted from low temperature pyrolysis of agricultural waste plastics. The waxes were chosen because they each represented a sustainable alternative towards petroleum, i.e., FT waxes are contrivable from biomass and CO2 by means of gasification and Power-to-X technology. The pyrolysis of plastic is a promising process to complement existing recycling processes and to reduce environmental pollution. Changes in cloud point, viscosity, and yield were investigated. A bifunctional zeolite catalyst (SAPO-11) loaded with 0.3 wt% platinum was used. The plastic waste lubricants showed lower cloud points and increased temperature stability as compared with lubricants from FT waxes. There was a special focus on the composition of the naphtha, which accumulated during cracking. While the plastic waste produced higher amounts of naphtha, its composition was quite similar to those from FT waxes, with the notable exception of a higher naphthene content.
Catalytic pyrolysis of post-industrial and post-consumer waste is studied in an auger-type reactor at pilot scale by applying two different zeolites and an amorphous silica-alumina catalyst in-situ at 400-550 °C. Contrary to thermal pyrolysis, of polyolefin-rich waste, high gaseous pyrolysis product yields of approx. 85 wt % are achieved with C 2 -C 4 olefin contents of up to 67 wt %. After deactivation by coke deposition catalyst regeneration is proved feasible for maintaining the gaseous product yield and composition. Waste feedstocks with significant nitrogen and halogen heteroatom content are not suitable for in-situ catalytic pyrolysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.