The specificity of interactions between neurons is believed to be mediated by diverse cell adhesion molecules, including members of the cadherin superfamily. Whereas mechanisms of classical cadherin adhesion have been studied extensively, much less is known about the related protocadherins (Pcdhs), which together make up the majority of the superfamily. Here we use quantitative cell aggregation assays and biochemical analyses to characterize cis and trans interactions among the 22-member γ-Pcdh family, which have been shown to be critical for the control of synaptogenesis and neuronal survival. We show that γ-Pcdh isoforms engage in trans interactions that are strictly homophilic. In contrast to classical cadherins, γ-Pcdh interactions are only partially Ca 2+ -dependent, and their specificity is mediated through the second and third extracellular cadherin (EC) domains (EC2 and EC3), rather than through EC1. The γ-Pcdhs also interact both covalently and noncovalently in the cis-orientation to form multimers both in vitro and in vivo. In contrast to γ-Pcdh trans interactions, cis interactions are highly promiscuous, with no isoform specificity. We present data supporting a model in which γ-Pcdh cistetramers represent the unit of their adhesive trans interactions. Unrestricted tetramerization in cis, coupled with strictly homophilic interactions in trans, predicts that the 22 γ-Pcdhs could form 234,256 distinct adhesive interfaces. Given the demonstrated role of the γ-Pcdhs in synaptogenesis, our data have important implications for the molecular control of neuronal specificity.cadherin | calcium-dependent | synaptogenesis | recognition | trafficking
SUMMARY
The 22 γ-protocadherins (γ-Pcdhs) potentially specify thousands of distinct homophilic adhesive interactions in the brain. Neonatal lethality of mice lacking the Pcdh-γ gene cluster has, however, precluded analysis of many brain regions. Here, we use a conditional Pcdh-γ allele to restrict mutation to the cerebral cortex and find that, in contrast to other central nervous system phenotypes, loss of γ-Pcdhs in cortical neurons does not affect their survival or result in reduced synaptic density. Instead, mutant cortical neurons exhibit severely reduced dendritic arborization. Mutant cortices have aberrantly high levels of protein kinase C (PKC) activity and of phosphorylated (inactive) myristoylated alanine-rich C-kinase substrate, a PKC target that promotes arborization. Dendrite complexity can be rescued in Pcdh-γ mutant neurons by inhibiting PKC, its upstream activator phospholipase C, or the γ-Pcdh binding partner focal adhesion kinase. Our results reveal a distinct role for the γ-Pcdhs in cortical development and identify a signaling pathway through which they play this role.
Molecular diversity of surface receptors has been hypothesized to provide a mechanism for selective synaptic connectivity. Neurexins are highly diversified receptors that drive the morphological and functional differentiation of synapses. Using a single cDNA sequencing approach, we detected 1,364 unique neurexin-α and 37 neurexin-β mRNAs produced by alternative splicing of neurexin pre-mRNAs. This molecular diversity results from near-exhaustive combinatorial use of alternative splice insertions in Nrxn1α and Nrxn2α. By contrast, Nrxn3α exhibits several highly stereotyped exon selections that incorporate novel elements for posttranscriptional regulation of a subset of transcripts. Complexity of Nrxn1α repertoires correlates with the cellular complexity of neuronal tissues, and a specific subset of isoforms is enriched in a purified cell type. Our analysis defines the molecular diversity of a critical synaptic receptor and provides evidence that neurexin diversity is linked to cellular diversity in the nervous system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.