Bacterial endophytes may be important for plant health and other ecologically relevant functions of poplar trees. The composition of endophytic bacteria colonizing the aerial parts of poplar was studied using a multiphasic approach. The terminal restriction fragment length polymorphism analysis of 16S rRNA genes demonstrated the impact of different hybrid poplar clones on the endophytic community structure. Detailed analysis of endophytic bacteria using cultivation methods in combination with cloning of 16S rRNA genes amplified from plant tissue revealed a high phylogenetic diversity of endophytic bacteria with a total of 53 taxa at the genus level that included Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes. The community structure displayed clear differences in terms of the presence and relative proportions of bacterial taxa between the four poplar clones studied. The results showed that the genetic background of the hybrid poplar clones corresponded well with the endophytic community structure. Out of the 513 isolates and 209 clones identified, Actinobacteria, in particular the family Microbacteriaceae, made up the largest fraction of the isolates, whereas the clone library was dominated by Alpha- and Betaproteobacteria. The most abundant genera among the isolates were Pseudomonas and Curtobacterium, while Sphingomonas prevailed among the clones.
Tetraploid plants were produced by inducing chromosome doubling using colchicine in in vitro shoot tips of poplar and black locust clones. Many of the plants treated with colchicine showed modified morphological characteristics like stunted growth, thicker leaves and modified leaf morphology. The counting of chloroplast number in the epidermal guard cells of stomata was used for the rapid screening of tetraploids. The differences in mean chloroplast numbers between diploid and tetraploid plants were highly significant. For all plants tested, the tetraploid genotype had almost double the number of chloroplasts per guard cell compared to the diploid origin. Some plants were further analysed by flow cytometry to verify their ploidy status that was determined by chloroplast numbers. The results of this study demonstrated for the first time that chloroplast counting in poplar and black locust could be an effective and reliable method for prescreening large numbers of plants for their ploidy level. The protocol might be applicable in a wide scope of breeding programs.
Metabolic profiling via gas chromatography coupled to mass spectrometry was used to investigate the influence of endophytic bacteria on shoots of in vitro-grown poplar plants free from culturable endophytic bacteria. The results demonstrate that the occurrence of an endophytic Paenibacillus strain strongly affects the composition of the plant metabolites of in vitro-grown poplars. Eleven metabolites were significantly changed between inoculated and non-inoculated poplar plants as determined by two independent experiments. Detected shifts in the primary metabolism of the poplar plants pointed to a mutualistic interaction between bacteria able to fix nitrogen and the host plant with altered nitrogen assimilation patterns. The corresponding metabolic signature comprises increased asparagine and urea levels as well as depleted sugars and organic acids of the tricarboxylic acid cycle. These observations coincide with the fact that the Paenibacillus sp. strain P22 is able to grow without nitrogen in the medium, indicating nitrogen fixation from the air also known from other Paenibacillus spp. In combination with the detected plant-growth-promoting effects of the endophyte Paenibacillus P22, a novel mutualistic interaction is observed.
High densities of endophytic bacteria were found in plant material from poplar, larch and spruce that had been micropropagated for at least 5 years. The majority of these bacteria were assigned to the genus Paenibacillus based on the sequencing of the 16S rRNA genes. Other endophytic bacteria such as Methylobacterium, Stenotrophomonas or Bacillus could also be found but only in some tissue cultures. Certain species or strains of Paenibacillus, especially those with a close relationship to P. humicus, seemed to accumulate under in vitro conditions without visible negative influences on the plant's development. Poplar microcuttings inoculated with the endophytic Paenibacillus isolate 22 showed significantly more roots per cutting and higher root length in comparison to the control plants after 3 weeks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.