Publication date 2011-10
Publication informationRenewable and Sustainable Energy Reviews, 15 (8): 4171-4186Publisher Elsevier Item record/more information http://hdl.handle.net/10197/5976
Publisher's statementThis is the author's version of a work that was accepted for publication in Renewable and Sustainable Energy Reviews. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Renewable and Sustainable Energy Reviews (VOL 15, ISSUE 8, (2011) ABSTRACT Robust alternative technology choices are required in the paradigm shift from the current crude oil-reliant transport fuel platform to a sustainable, more flexible transport infrastructure. In this vein, fast pyrolysis of biomass and upgrading of the product is deemed to have potential as a technology solution. The objective of this review is to provide an update on recent laboratory research and commercial developments in fast pyrolysis and upgrading techniques. Fast pyrolysis is a relatively mature technology and is on the verge of commercialisation. While upgrading of biooils is currently confined to laboratory and pilot scale, an increased understanding of upgrading processes has been achieved in recent times.
a b s t r a c tAn international study of fast pyrolysis of lignin was undertaken. Fourteen laboratories in eight different countries contributed. Two lignin samples were distributed to the laboratories for analysis and bench-scale process testing in fast pyrolysis. Analyses included proximate and ultimate analysis, thermogravimetric analysis, and analytical pyrolysis. The bench-scale test included bubbling fluidized-bed reactors and entrained-flow systems. Based on the results of the various analyses and tests it was concluded that a concentrated lignin (estimated at about 50% lignin and 50% cellulose) behaved like a typical biomass, producing a slightly reduced amount of a fairly typical bio-oil, while a purified lignin material was difficult to process in the fast pyrolysis reactors and produced a much lower amount of a different kind of bio-oil. It was concluded that for highly concentrated lignin feedstocks new reactor designs will be required other than the typical fluidized-bed fast pyrolysis systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.