These results demonstrate that HbAS group is prone to higher RBC rigidity, which might lead to hemorheological alterations that are thought to participate to microcirculation disorders. However, these alterations are limited by the coexistence of alpha-thalassemia. Moreover, hemorheological parameters were not further impaired in SCT athletes with or without alpha-thalassemia in response to exercise. Training status might be protective from physiological stresses usually leading to sickling process in SCT carriers.
The aim of the study was to examine the effects of exercise on soluble vascular cell adhesion molecule-1 (sVCAM-1) and intercellular adhesion molecule-1 (sICAM-1) in sickle cell trait (SCT) athletes with or without α-thalassemia. Six athletes with SCT, seven athletes with both SCT and α-thalassemia (SCTAT), and seven control athletes (Cont) performed an incremental and maximal test on cycloergometer. Levels of sICAM-1 and sVCAM-1 were assessed at rest, immediately after the end of exercise, and 1, 2, and 24 h after exercise. Although Cont and SCTAT groups exhibited similar basal plasma levels of inflammatory and adhesion molecules, the SCT group had higher sVCAM-1 basal concentrations. Incremental exercise resulted in a significant increase of sVCAM-1 in all subjects, which remained elevated only in the SCT group during the recovery period. In conclusion, as sVCAM-1 increased with exercise and during the recovery period, our findings support the concept that SCT athletes might be at risk for microcirculatory disturbances and adhesive phenomena developing at rest and several hours after exercise. α-Thalassemia might be considered protective among exercising SCT subjects.
The influence of sickle cell trait and/or α-thalassemia on skeletal muscle microvascular network characteristics was assessed and compared with control subjects [hemoglobin (Hb) AA] in 30 Cameroonian residents [10 HbAA, 5 HbAA α-thalassemia (α-t), 6 HbAS, and 9 HbASα-t] matched for maximal work capacity and daily energy expenditure. Subjects performed an incremental exercise to exhaustion and underwent a muscle biopsy. Muscle fiber type and surface area were not different among groups. However, sickle cell trait (SCT) was associated with lower capillary density ( P < 0.05), lower capillary tortuosity ( P < 0.001), and enlarged microvessels ( P < 0.01). SCT carriers had reduced counts of microvessels <5-μm diameter, but a higher percentage of broader microvessels, i.e., diameter >10 μm ( P < 0.05). α-Thalassemia seemed to be characterized by a higher capillary tortuosity and unchanged capillary density and diameter. Thus, while SCT is a priori clinically benign, we demonstrate for the first time that significant remodeling of the microvasculature occurs in SCT carriers. These modifications may possibly reflect protective adaptations against hemorheological and microcirculatory dysfunction induced by the presence of HbS. The remodeling of the microvascular network occurs to a lesser extent in α-thalassemia. In α-thalassemic subjects, increased capillary tortuosity would promote oxygen supply to muscle tissues and might compensate for the lower Hb content often reported in those subjects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.