Stimulated emission depletion (STED) fluorescence nanoscopy allows the three-dimensional (3D) visualization of nanoscale subcellular structures, providing unique insights into their spatial organization. However, 3D-STED imaging and quantification of dense features are obstructed by the low signal-to-background ratio (SBR) resulting from optical aberrations and out-of-focus background. Here, combining adaptive optics elements, we present an easy-to-implement, flexible, and effective method to improve the SBR by dynamic phase switching. By switching to a counterclockwise vortex phase mask and a top-hat one with an incorrect inner radius, the depletion pattern features a nonzero-intensity center, enabling accurate background recordings. When the recorded background is subtracted from the aberration-corrected 3D-STED image, the SBR in dense sample areas can be improved by a factor of 3−7 times. We demonstrate our method on various dense subcellular structures, showing more advantages than the software-based background subtraction algorithms.
Stimulated emission depletion (STED) fluorescence nanoscopy allows the three-dimensional (3D) visualization of nanoscale subcellular structures, providing unique insights into their spatial organization. However, 3D-STED imaging and quantification of dense features are obstructed by the low signal-to-background ratio (SBR), resulting from optical aberrations and out-of-focus background. Here, combining with adaptive optics, we present an easy-to-implement and flexible method to improve SBR by dynamic phase switching. By switching to a counterclockwise vortex phase mask and a top-hat one with an incorrect inner radius, the depletion pattern features a nonzero-intensity center, enabling accurate background recordings. When the recorded background is subtracted from the aberration-corrected 3D-STED image, the SBR in dense sample areas can be improved by a factor of 3–6 times. We demonstrate our method on various dense subcellular structures, showing more advantages than the software-based background subtraction algorithms.Abstract Figure
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.