Plant diseases can cause a significant decrease in tea crop production. Early disease detection can help to minimize the loss. For tea plants, experts can identify the diseases by visual inspection on the leaves. However, providing experts to deal with disease identification may be very costly. The machine learning technology can be implemented to provide automatic plant disease detection. Currently, deep learning is state-of-the-art for object identification in computer vision. In this study, the researchers propose the Convolutional Neural Network (CNN) for tea disease detections. The researchers focus on the implementation of concatenated CNN, namely GoogleNet, Xception, and Inception-ResNet-v2, for this task. About 4727 images of tea leaves are collected, comprising of three types of diseases that commonly occur in Indonesia and a healthy class. The experimental results confirm the effectiveness of concatenated CNN for tea disease detections. The accuracy of 89.64% is achieved.
In this paper, we propose a novel deep learning-based feature learning architecture for object classification. Conventionally, deep learning methods are trained with supervised learning for object classification. But, this would require large amount of training data. Currently there are increasing trends to employ unsupervised learning for deep learning. By doing so, dependency on the availability of large training data could be reduced. One implementation of unsupervised deep learning is for feature learning where the network is designed to “learn” features automatically from data to obtain good representation that then could be used for classification. Autoencoder and generative adversarial networks (GAN) are examples of unsupervised deep learning methods. For GAN however, the trajectories of feature learning may go to unpredicted directions due to random initialization, making it unsuitable for feature learning. To overcome this, a hybrid of encoder and deep convolutional generative adversarial network (DCGAN) architectures, a variant of GAN, are proposed. Encoder is put on top of the Generator networks of GAN to avoid random initialisation. We called our method as EGAN. The output of EGAN is used as features for two deep convolutional neural networks (DCNNs): AlexNet and DenseNet. We evaluate the proposed methods on three types of dataset and the results indicate that better performances are achieved by our proposed method compared to using autoencoder and GAN.
Natural disasters, climate change[54] and plant diseases[51] are among many factors that threaten the food security. Plant diseases in particular, may cause great loss not only for farmers, but also for global economy. For instance, The International Potato Center (CIP) reports that around 15 % loss of potatoes production[24] is due to late blight diseases only. Globally, plant diseases cause more than 20 % crop loss annually[49]. The
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.