Network models are a fundamental tool for the visualization and analysis of molecular interactions occurring in biological systems. While broadly illuminating the molecular machinery of the cell, graphical representations of protein interaction networks mask complex patterns of interaction that depend on temporal, spatial, or condition-specific contexts. In this paper, we introduce a novel graph construct called a biological context network that explicitly captures these changing patterns of interaction from one biological context to another. We consider known gene ontology biological process and cellular component annotations as a proxy for context, and show that aggregating small process-specific protein interaction sub-networks leads to the emergence of observed scale-free properties. The biological context model also provides the basis for characterizing proteins in terms of several context-specific measures, including 'interactive promiscuity,' which identifies proteins whose interacting partners vary from one context to another. We show that such context-sensitive measures are significantly better predictors of knockout lethality than node degree, reaching better than 70% accuracy among the top scoring proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.