Non-orthogonal multiple access (NOMA) and mmWave are two complementary technologies that can support the capacity demand that arises in 5G and beyond networks. The increasing number of users are served simultaneously while providing a solution for the scarcity of the bandwidth. In this paper we present a method for clustering the users in a mmWave-NOMA system with the objective of maximizing the sum-rate. An unsupervised machine learning technique, namely, hierarchical clustering is utilized which does the automatic identification of the optimal number of clusters. The simulations prove that the proposed method can maximize the sum-rate of the system while satisfying the minimum QoS for all users without the need of the number of clusters as a prerequisite when compared to other clustering methods such as k-means clustering.
Leveraging higher frequencies up to THz band paves the way towards a faster network in the next generation of wireless communications. However, such shorter wavelengths are susceptible to higher scattering and path loss forcing the link to depend predominantly on the line-of-sight (LOS) path. Dynamic movement of humans has been identified as a major source of blockages to such LOS links. In this work, we aim to overcome this challenge by predicting human blockages to the LOS link enabling the transmitter to anticipate the blockage and act intelligently. We propose an end-to-end system of infrastructuremounted LiDAR sensors to capture the dynamics of the communication environment visually, process the data with deep learning and ray casting techniques to predict future blockages. Experiments indicate that the system achieves an accuracy of 87% predicting the upcoming blockages while maintaining a precision of 78% and a recall of 79% for a window of 300 ms.
This paper investigates the performance of a twouser downlink non-orthogonal multiple access (NOMA) system using hybrid automatic repeat request with chase combining (HARQ-CC) in finite blocklength. First, an analytical framework is developed by deriving closed-form approximations for the individual average block error rate (BLER) of the near and the far user. Based upon that, the performance of NOMA is discussed in comparison to orthogonal multiple access (OMA), which draws the conclusion that NOMA outperforms OMA in terms of user fairness. Further, an algorithm is devised to determine the required blocklength and power allocation coefficients for NOMA that satisfies reliability targets for the users. The required blocklength for NOMA is compared to OMA, which shows NOMA has a lower blocklength requirement in high transmit signal-to-noise ratio (SNR) conditions, leading to lower latency than OMA when reliability requirements in terms of BLER for the two users are in the order of 10 −5. Index Terms-non-orthogonal multiple access, hybrid automatic repeat request, chase combining, short packet communications, block error rate, ultra-reliable communications.
Ultra-reliable and low-latency communications (URLLC) play a vital role in factory automation. To share the situational awareness data collected from the infrastructure as raw or processed data, the system should guarantee the URLLC capability since this is a safety-critical application. In this work, the resource allocation problem for an infrastructure-based communication architecture (Elevated LiDAR system/ ELiD) has been considered which can support the autonomous driving in a factory floor. The decoder error probability and the number of channel uses parameterize the reliability and the latency in the considered optimization problems. A maximum decoder error probability minimization problem and a total energy minimization problem have been considered in this work to analytically evaluate the performance of the ELiD system under different vehicle densities.
One key vertical application that will be enabled by 6G is the automation of the processes with the increased use of robots. As a result, sensing and localization of the surrounding environment becomes a crucial factor for these robots to operate. Light detection and ranging (LiDAR) has emerged as an appropriate method of sensing due to its capability of generating detail-rich information with high accuracy. However, LiDARs are power hungry devices that generate a lot of data, and these characteristics limit their use as on-board sensors in robots. In this paper, we present a novel approach on the methodology of generating an enhanced 3D map with improved field-of-view using multiple LiDAR sensors. We utilize an inherent property of LiDAR point clouds; rings and data from the inertial measurement unit (IMU) embedded in the sensor for registration of the point clouds. The generated 3D map has an accuracy of 10 cm when compared to the real-world measurements. We also carry out the practical implementation of the proposed method using two LiDAR sensors. Furthermore, we develop an application to utilize the generated map where a robot navigates through the mapped environment with minimal support from the sensors on-board. The LiDARs are fixed in the infrastructure at elevated positions. Thus this is applicable to vehicular and factory scenarios. Our results further validate the idea of using multiple elevated LiDARs as a part of the infrastructure for various applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.