MicroRNAs (miRNAs) are fine regulators of gene expression which participate in the regulation of almost every phase of cell physiology, including development of immune cells and adjustment of immune response. In the studies with in vitro/in vivo model systems, specific miRNAs are revealed to have various roles in cardiovascular development and physiological functions. Furthermore, some studies have been done to understand the role of miRNAs about myocarditis, heart failure and coronary artery diseases. miRNAs crucial role in the pathogenesis of other rheumatic diseases have been investigated, however rheumatic carditis was not studied. The aim of this study is to assess values of miRNAs in children with rheumatic carditis and compare them with healthy children. This study included 36 children with rheumatic carditis (mean aged 12.1 ± 2.1 years) and age-gender matched 35 healthy controls (mean aged 11.1 ± 2.3 years). Conventional echocardiography was performed to all subjects. Using real-time polymerase chain reaction, the expression of some miRNAs (hsamiR-16-5p, hsa-miR-221-3p, hsa-miR-223-3p, hsa-miR-10a-5p, hsa-miR-24-3p, hsamiR-92a-3p, hsa-iR-320a, hsa-miR-21-5p, hsa-miR-155-5p, hsa-miR-132-3p, hsamiR-146a-5p, hsa-miR-499a-5p, hsa-miR-1, hsa-miR-125, hsa-miR-196a-5p, hsa-miR-130b-3p, hsa-miR-133b, hsa-miR150-5p,hsa-miR-204-5p, hsa-miR-203a) were analyzed. hsa-miR-16-5p(-1.46 fold, p < 0.01), hsa-miR-223-3p(-1.46 fold, p < 0.01), and hsa-miR-92a-3p(-1.27 fold, p < 0.05) expressions in the patients were lower than those of controls, whereas other examined miRNAs did not differently express between the groups. Results of the study demonstrated that significant downregulation of hsa-miR-16-5p, hsa-miR-223-3p and hsa-miR-92a-3p in children with rheumatic carditis. Since, this is the first study in children with rheumatic carditis, further studies are needed for lightening whether these miRNAs might be helpful as biomarkers.