Solid-state NMR spectroscopy, both conventional and dynamic nuclear polarization (DNP)-enhanced, was employed to study the spatial distribution of organic functional groups attached to the surface of mesoporous silica nanoparticles via co-condensation and grafting. The most revealing information was provided by DNP-enhanced two-dimensional Si-Si correlation measurements, which unambiguously showed that post-synthesis grafting leads to a more homogeneous dispersion of propyl and mercaptopropyl functionalities than co-condensation. During the anhydrous grafting process, the organosilane precursors do not self-condense and are unlikely to bond to the silica surface in close proximity (less than 4 Å) due to the limited availability of suitably arranged hydroxyl groups.
Surface functionalization controls local environments and induces solvent-like effects at liquid-solid interfaces. We explored structure-property relationships between organic groups bound to pore surfaces of mesoporous silica nanoparticles and Stokes shifts of the adsorbed solvatochromic dye Prodan. Correlating shifts of the dye on the surfaces with its shifts in solvents resulted in a local polarity scale for functionalized pores. The scale was validated by studying the effects of pore polarity on quenching of Nile Red fluorescence and on the vibronic band structure of pyrene. Measurements were done in aqueous suspensions of porous particles, proving that the dielectric properties in the pores are different from the bulk solvent. The precise control of pore polarity was used to enhance the catalytic activity of TEMPO in the aerobic oxidation of furfuryl alcohol in water. An inverse relationship was found between pore polarity and activity of TEMPO in the pores, demonstrating that controlling the local polarity around an active site allows modulating the activity of nanoconfined catalysts.
Two-dimensional (1)H{(13)C} heteronuclear correlation solid-state NMR spectra of naturally abundant solid materials are presented, acquired using the 0.75-mm magic angle spinning (MAS) probe at spinning rates up to 100 kHz. In spite of the miniscule sample volume (290 nL), high-quality HSQC-type spectra of bulk samples as well as surface-bound molecules can be obtained within hours of experimental time. The experiments are compared with those carried out at 40 kHz MAS using a 1.6-mm probe, which offered higher overall sensitivity due to a larger rotor volume. The benefits of ultrafast MAS in such experiments include superior resolution in (1)H dimension without resorting to (1)H-(1)H homonuclear RF decoupling, easy optimization, and applicability to mass-limited samples. The HMQC spectra of surface-bound species can be also acquired under 100 kHz MAS, although the dephasing of transverse magnetization has significant effect on the efficiency transfer under MAS alone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.