No abstract
Publishing data for analysis from a table containing personal records, while maintaining individual privacy, is a problem of increasing importance today. The traditional approach of de-identifying records is to remove identifying fields such as social security number, name etc. However, recent research has shown that a large fraction of the US population can be identified using non-key attributes (called quasi-identifiers) such as date of birth, gender, and zip code [15]. Sweeney [16] proposed the k-anonymity model for privacy where non-key attributes that leak information are suppressed or generalized so that, for every record in the modified table, there are at least k−1 other records having exactly the same values for quasi-identifiers. We propose a new method for anonymizing data records, where quasi-identifiers of data records are first clustered and then cluster centers are published. To ensure privacy of the data records, we impose the constraint 1 This work was done when the authors were Computer Science PhD students at Stanford University. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. that each cluster must contain no fewer than a pre-specified number of data records. This technique is more general since we have a much larger choice for cluster centers than k-Anonymity. In many cases, it lets us release a lot more information without compromising privacy. We also provide constant-factor approximation algorithms to come up with such a clustering. This is the first set of algorithms for the anonymization problem where the performance is independent of the anonymity parameter k. We further observe that a few outlier points can significantly increase the cost of anonymization. Hence, we extend our algorithms to allow an fraction of points to remain unclustered, i.e., deleted from the anonymized publication. Thus, by not releasing a small fraction of the database records, we can ensure that the data published for analysis has less distortion and hence is more useful. Our approximation algorithms for new clustering objectives are of independent interest and could be applicable in other clustering scenarios as well.
Abstract. In many applications involving continuous data streams, data arrival is bursty and data rate fluctuates over time. Systems that seek to give rapid or real-time query responses in such an environment must be prepared to deal gracefully with bursts in data arrival without compromising system performance. We discuss one strategy for processing bursty streams -adaptive, load-aware scheduling of query operators to minimize resource consumption during times of peak load. We show that the choice of an operator scheduling strategy can have significant impact on the runtime system memory usage as well as output latency. Our aim is to design a scheduling strategy that minimizes the maximum runtime system memory while maintaining the output latency within prespecified bounds. We first present Chain scheduling, an operator scheduling strategy for data stream systems that is near-optimal in minimizing runtime memory usage for any collection of single-stream queries involving selections, projections, and foreign-key joins with stored relations. Chain scheduling also performs well for queries with sliding-window joins over multiple streams and multiple queries of the above types. However, during bursts in input streams, when there is a buildup of unprocessed tuples, Chain scheduling may lead to high output latency. We study the online problem of minimizing maximum runtime memory, subject to a constraint on maximum latency. We present preliminary observations, negative results, and heuristics for this problem. A thorough experimental evaluation is provided where we demonstrate the potential benefits of Chain scheduling and its different variants, compare it with competing scheduling strategies, and validate our analytical conclusions.
We present techniques for privacy-preserving computation of multidimensional aggregates on data partitioned across multiple clients. Data from different clients is perturbed (randomized) in order to preserve privacy before it is integrated at the server. We develop formal notions of privacy obtained from data perturbation and show that our perturbation provides guarantees against privacy breaches.We develop and analyze algorithms for reconstructing counts of subcubes over perturbed data. We also evaluate the tradeoff between privacy guarantees and reconstruction accuracy and show the practicality of our approach.
Publishing data for analysis from a table containing personal records, while maintaining individual privacy, is a problem of increasing importance today. The traditional approach of de-identifying records is to remove identifying fields such as social security number, name etc. However, recent research has shown that a large fraction of the US population can be identified using non-key attributes (called quasi-identifiers) such as date of birth, gender, and zip code [15]. Sweeney [16] proposed the k-anonymity model for privacy where non-key attributes that leak information are suppressed or generalized so that, for every record in the modified table, there are at least k−1 other records having exactly the same values for quasi-identifiers. We propose a new method for anonymizing data records, where quasi-identifiers of data records are first clustered and then cluster centers are published. To ensure privacy of the data records, we impose the constraint 1 This work was done when the authors were Computer Science PhD students at Stanford University. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. that each cluster must contain no fewer than a pre-specified number of data records. This technique is more general since we have a much larger choice for cluster centers than k-Anonymity. In many cases, it lets us release a lot more information without compromising privacy. We also provide constant-factor approximation algorithms to come up with such a clustering. This is the first set of algorithms for the anonymization problem where the performance is independent of the anonymity parameter k. We further observe that a few outlier points can significantly increase the cost of anonymization. Hence, we extend our algorithms to allow an fraction of points to remain unclustered, i.e., deleted from the anonymized publication. Thus, by not releasing a small fraction of the database records, we can ensure that the data published for analysis has less distortion and hence is more useful. Our approximation algorithms for new clustering objectives are of independent interest and could be applicable in other clustering scenarios as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.