A novel benzimidazole-containing phthalonitrile monomer (BIPN) was synthesized. The chemical structure of BIPN was confirmed by various spectroscopic techniques. Differential scanning calorimetry measurement revealed that the self-promoted polymerization reaction of the BIPN proceeds extremely sluggish and showed low polymerization exothermic effect. Subsequent rheological measurement displayed that the BIPN was able to keep a stable and low melt viscosity for 4 h at 300 C, 2 h at 310 C, and 50 min at 330 C. The derived BIPN polymers showed excellent thermal properties revealed by thermogravimetric analysis, which were better than those of the corresponding polymer derived from phthalonitrile monomer without benzimidazole moiety. IR analysis confirmed the occurrence of the triazine ring within the polymer crosslinking sites. V C 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 50: [4977][4978][4979][4980][4981][4982] 2012
Inflammation and thrombosis are two major complications of blood-contacting catheters that are used as extracorporeal circuits for hemodialysis and life-support systems. In clinical applications, complications can lead to increased mortality and morbidity rates. In this work, a biomimetic erythrocyte membrane zwitterion coating based on poly(2-methacryloyloxyethyl phosphorylcholine-co-dopamine methacrylate) (pMPCDA) copolymers is uniformly and robustly modified onto a polyvinyl chloride (PVC) catheter via mussel-inspired surface chemistry. The zwitterionic pMPCDA coating exhibits excellent antifouling activity and resists bacterial adhesion, fibrinogen adsorption, and platelet adhesion/activation. The material also demonstrates great hemocompatibility, cytocompatibility, and anticoagulation properties in vitro. Additionally, this biocompatible pMPCDA coating reduces in vivo foreign-body reactions by mitigating inflammatory response and collagen capsule formation, due to its outstanding ability to resist nonspecific protein adsorption. More importantly, when compared with a bare PVC catheter, the pMPCDA coating exhibits outstanding antithrombotic properties when tested in an ex vivo rabbit perfusion model. Thus, it is envisioned that this biomimetic erythrocyte membrane surface strategy will provide a promising way to mitigate inflammation and thrombosis caused by the use of blood-contacting catheters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.