Drug-loading hydrogels are promising candidates in the bioengineering research field; nevertheless, hydrophobic drug loading into a hydrophilic carrier system remains unsolved and is full of challenges. In this work, following the potential dual interactions between peptides and aromatic drugs, we developed a potent hybrid hydrogel formation method, namely, "peptide-/drug-directed selfassembly". The hybrid hydrogels were synthesized using polyethylene glycol (PEG)-based Fmoc-FF peptide hybrid polyurethane, in which curcumin could be encapsulated through self-assembly with Fmoc-FF peptide via π−π stacking. On the basis of this, curcumin loading capacity could be improved to as high as 3.3 wt % with sustained release. In addition, the curcumin loading enhanced the hydrogel mechanical properties from 4 kPa to over 10 kPa, similar to that of natural soft tissues. Furthermore, the hydrogels were injectable with self-healing properties since the Fmoc-FF peptide/ curcumin coassembly was noncovalent and reversible. Spectroscopy results confirmed the existence of the coassembly of Fmoc-FF peptide/curcumin. Further in vivo experiments effectively demonstrated that the hydrogels could improve the cutaneous wound healing in a full-thickness skin defected model. This peptide-/drug-directed self-assembly of hybrid polyurethane hydrogel could be used as a promising platform for tissue-engineering scaffold and biomedical application.
Recently, rapid acquisition of antibiotic resistance, increased prevalence of antibiotic-resistant bacterial infections, and slow healing of infected wound have led to vast difficulties in developing innovative antimicrobial agents to obliterate pathogenic bacteria and simultaneously accelerate wound healing. To effectively solve this problem, we designed light-responsive multifunctional nanoparticles with conjugation of quaternary ammonium chitosan and photosensitizer chlorin e6 (Ce6) to merge chemical and photodynamic therapy to efficient antibacteria. The Mg/(−)-epigallocatechin-3-gallate (EGCG) complex rapidly responded to light irradiation under 660 nm with release of magnesium ions, which effectively accelerated wound healing without toxicity to mammalian cells. Notably, positively charged nanoparticles could efficiently adhere to the bacterial surface, and reactive oxygen species (ROS) produced under laser irradiation destroyed the membrane structure of the bacteria, which is irreversible, ultimately leading to bacteria death. Thus, multifunctional nanoparticles with a combination of chemical and photodynamic antimicrobial therapy would offer guidance to rational predicted and designed new effective antimicrobial nanomaterials. Most importantly, it may represent a promising class of antimicrobial strategy for potential clinical translation.
A N-bridged diiron complex [Cp*(PhPCHS)Fe](μ-N) (1) has been found to catalyze the hydroboration of N-heteroarenes with pinacolborane, giving N-borylated 1,2-reduced products with high regioselectivity. The catalysis is initiated by coordination of N-heteroarenes to the iron center, while the B-H bond cleavage is the rate-determining step.
Two chiral enantiomers of histidine-derived amphiphilic gelators, (4R,6S)-UIPCA and (4S,6R)-UIPCA, were synthesized through Pictet-Spengler reaction and their gelation behaviors with different organic acids were investigated. Interestingly, the chiral enantiomers of UIPCA showed smart enantioselectivity for gelating tartaric acid enantiomers to form hydrogels with excellent mechanical strength. The TEM and SEM images demonstrated that the hydrogels were composed of networks by physical entanglement of nanofibers with high aspect ratios. The formation of nanofibers was considered to be driven by the interplay of hydrogen bonding, electrostatic attraction, and hydrophobic interaction, which was supported by XRD and FT-IR spectra. The hydrogels exhibited sensitive response to a series of external stimuli, such as temperature, metal ions, and host-guest interactions, to realize the reversible gel-sol transition. The property of the gelation was elaborated and the gelators were expected to find their applications in chiral discrimination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.