Internet memes have become powerful means to transmit political, psychological, and sociocultural ideas. Although memes are typically humorous, recent days have witnessed an escalation of harmful memes used for trolling, cyberbullying, and abuse. Detecting such memes is challenging as they can be highly satirical and cryptic. Moreover, while previous work has focused on specific aspects of memes such as hate speech and propaganda, there has been little work on harm in general. Here, we aim to bridge this gap. We focus on two tasks: (i) detecting harmful memes, and (ii) identifying the social entities they target. We further extend a recently released HarMeme dataset, which covered COVID-19, with additional memes and a new topic: US politics. To solve these tasks, we propose MOMENTA (MultimOdal framework for detecting harmful MemEs aNd Their tArgets), a novel multimodal deep neural network that uses global and local perspectives to detect harmful memes. MOMENTA systematically analyzes the local and the global perspective of the input meme (in both modalities) and relates it to the background context. MOMENTA is interpretable and generalizable, and our experiments show that it outperforms several strong rivaling approaches. * denotes equal contribution (a) Partially harmful meme. (b) Very harmful meme.
We describe SemEval-2021 task 6 on Detection of Persuasion Techniques in Texts and Images: the data, the annotation guidelines, the evaluation setup, the results, and the participating systems. The task focused on memes and had three subtasks: (i) detecting the techniques in the text, (ii) detecting the text spans where the techniques are used, and (iii) detecting techniques in the entire meme, i.e., both in the text and in the image. It was a popular task, attracting 71 registrations, and 22 teams that eventually made an official submission on the test set. The evaluation results for the third subtask confirmed the importance of both modalities, the text and the image. Moreover, some teams reported benefits when not just combining the two modalities, e.g., by using early or late fusion, but rather modeling the interaction between them in a joint model.
Propaganda can be defined as a form of communication that aims to influence the opinions or the actions of people towards a specific goal; this is achieved by means of well-defined rhetorical and psychological devices. Propaganda, in the form we know it today, can be dated back to the beginning of the 17th century. However, it is with the advent of the Internet and the social media that it has started to spread on a much larger scale than before, thus becoming major societal and political issue. Nowadays, a large fraction of propaganda in social media is multimodal, mixing textual with visual content. With this in mind, here we propose a new multi-label multimodal task: detecting the type of propaganda techniques used in memes. We further create and release a new corpus of 950 memes, carefully annotated with 22 propaganda techniques, which can appear in the text, in the image, or in both. Our analysis of the corpus shows that understanding both modalities together is essential for detecting these techniques. This is further confirmed in our experiments with several state-of-the-art multimodal models.
Modern event-driven applications, such as, web pages and mobile apps, rely on asynchrony to ensure smooth end-user experience. Unfortunately, even though these applications are executed by a single event-loop thread, they can still exhibit nondeterministic behaviors depending on the execution order of interfering asynchronous events. As in classic shared-memory concurrency, this nondeterminism makes it challenging to discover errors that manifest only in specific schedules of events.In this work we propose the first stateless model checker for event-driven applications, called R4. Our algorithm systematically explores the nondeterminism in the application and concisely exposes its overall effect, which is useful for bug discovery. The algorithm builds on a combination of three key insights: (i) a dynamic partial order reduction (DPOR) technique for reducing the search space, tailored to the domain of event-driven applications, (ii) conflict-reversal bounding based on a hypothesis that most errors occur with a small number of event reorderings, and (iii) approximate replay of event sequences, which is critical for separating harmless from harmful nondeterminism.We instantiate R4 for the domain of client-side web applications and use it to analyze event interference in a number of real-world programs. The experimental results indicate that the precision and overall exploration capabilities of our system significantly exceed that of existing techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.