Internet memes have become powerful means to transmit political, psychological, and sociocultural ideas. Although memes are typically humorous, recent days have witnessed an escalation of harmful memes used for trolling, cyberbullying, and abuse. Detecting such memes is challenging as they can be highly satirical and cryptic. Moreover, while previous work has focused on specific aspects of memes such as hate speech and propaganda, there has been little work on harm in general. Here, we aim to bridge this gap. We focus on two tasks: (i) detecting harmful memes, and (ii) identifying the social entities they target. We further extend a recently released HarMeme dataset, which covered COVID-19, with additional memes and a new topic: US politics. To solve these tasks, we propose MOMENTA (MultimOdal framework for detecting harmful MemEs aNd Their tArgets), a novel multimodal deep neural network that uses global and local perspectives to detect harmful memes. MOMENTA systematically analyzes the local and the global perspective of the input meme (in both modalities) and relates it to the background context. MOMENTA is interpretable and generalizable, and our experiments show that it outperforms several strong rivaling approaches. * denotes equal contribution (a) Partially harmful meme. (b) Very harmful meme.
Among the various modes of communication in social media, the use of Internet memes has emerged as a powerful means to convey political, psychological, and socio-cultural opinions. Although memes are typically humorous in nature, recent days have witnessed a proliferation of harmful memes targeted to abuse various social entities. As most harmful memes are highly satirical and abstruse without appropriate contexts, off-the-shelf multimodal models may not be adequate to understand their underlying semantics. In this work, we propose two novel problem formulations: detecting harmful memes and the social entities that these harmful memes target. To this end, we present HarMeme, the first benchmark dataset, containing 3, 544 memes related to COVID-19. Each meme went through a rigorous two-stage annotation process. In the first stage, we labeled a meme as very harmful, partially harmful, or harmless; in the second stage, we further annotated the type of target(s) that each harmful meme points to: individual, organization, community, or society/general public/other. The evaluation results using ten unimodal and multimodal models highlight the importance of using multimodal signals for both tasks. We further discuss the limitations of these models and we argue that more research is needed to address these problems.
Today's Internet is awash in memes as they are humorous, satirical, or ironic which make people laugh. According to a survey, 33% of social media users in age bracket [13-35] send memes every day, whereas more than 50% send every week. Some of these memes spread rapidly within a very short time-frame, and their virality depends on the novelty of their (textual and visual) content. A few of them convey positive messages, such as funny or motivational quotes; while others are meant to mock/hurt someone's feelings through sarcastic or offensive messages. Despite the appealing nature of memes and their rapid emergence on social media, effective analysis of memes has not been adequately attempted to the extent it deserves. Recently, in SemEval'20, a pioneering attempt has been made in this direction by organizing a shared task on `Memotion Analysis' (meme emotion analysis). As expected, the competition attracted more than 500 participants with the final submission of [23-32] systems across three sub-tasks. In this paper, we attempt to solve the same set of tasks suggested in the SemEval'20 - Memotion Analysis competition. We propose a multi-hop attention-based deep neural network framework, called MHA-Meme, whose prime objective is to leverage the spatial-domain correspondence between the visual modality (an image) and various textual segments to extract fine-grained feature representations for classification. We evaluate MHA-Meme on the `Memotion Analysis' dataset for all three sub-tasks - sentiment classification, affect classification, and affect class quantification. Our comparative study shows state-of-the-art performances of MHA-Meme for all three tasks compared to the top systems that participated in the competition. Unlike all the baselines which perform inconsistently across all three tasks, MHA-Meme outperforms baselines in all the tasks on average. Moreover, we validate the generalization of MHA-Meme on another set of manually annotated test samples and observe it to be consistent. Finally, we establish the interpretability of MHA-Meme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.