Industrial Internet of Things (IIoT) is claimed to be a global booster technology for economic development. IIoT brings bulky use-cases with a simple goal of enabling automation, autonomation or just plain digitalization of industrial processes. The abundance of interconnected IoT and CPS generate additional burden on the telecommunication networks, imposing number of challenges to satisfy the key performance requirements. In particular, the QoS metrics related to real-time data exchange for critical machine-to-machine type communication. This paper analyzes a real-world example of IIoT from a QoS perspective, such as remotely operated underground mining vehicle. As part of the performance evaluation, a software tool is developed for estimating the absolute, one-way delay in end-toend transmissions. The measured metric is passed to a machine learning model for one-way delay prediction based on LTE RAN measurements using a commercially available cutting-edge software tool. The achieved results prove the possibility to predict the delay figures using machine learning model with a coefficient of determination up to 90%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.