Active distribution networks and microgrids will be powerful tools for future power systems in their endeavor to integrate more renewable energy sources, increase distributed generation and optimize their operation. In this paper, a method for the coordinated optimal operation scheduling of active distribution networks that are hosting complex microgrids comprising large building prosumers and plug-in electric vehicle aggregators is proposed. The electrical and thermal power systems of the microgrid are modelled in detail while the examined active distribution network is assumed to be able to optimally shift part of its loads in time and comprises renewable energy sources as part of its local generation. Moreover, the microgrid is assumed to be able to shift part of its load in order to assist the active distribution network in order to satisfy all of the network constraints when this is required. The proposed method was developed in such a way that allows both the microgrid and the active distribution network to optimize their operations without exchanging the internal information comprising their technical characteristics and parameters. To this end, the method is organized into five levels wherein only the absolutely necessary information is exchanged, i.e., the power that is exchanged by the microgrid and the active distribution network and the time periods in which the network constraints are violated.
The present and future conditions in the energy market impose extremely high standards to the operation of building energy systems. Moreover, distribution networks face new operational and technical challenges as a result of the rapid penetration of renewable energy sources (RES) and other forms of distributed generation. Consequently, active distribution networks (ADNs) will play a crucial role in the exploitation of smart building prosumers, smart grids, and RES. In this paper, an optimization method for the sustainable operation of active distribution networks hosting smart residential building prosumers, plug-in electric vehicle (PEV) aggregators, and RES was developed. The thermal and electrical loads of the residential buildings were modeled in detail and an aggregation method was implemented to the hosted PEVs. Moreover, smart power dispatch techniques were applied at each building prosumer and PEV aggregator hosted by the active distribution network. Simultaneously, all the operational limitations of the active distribution network, building energy systems, and the hosted PEVs were satisfied. The constrained optimal power flow (OPF) algorithm was exploited to keep the voltages of the hosting distribution network between the permissible bounds. A significant operation cost reduction of 17% was achieved. The developed models were verified through detailed simulation results.
A method for optimal energy and power management of microgrids consisting of mega buildings, plug-in electric vehicles (PEVs) and renewable energy sources (RES) with low computation requirements is proposed by the authors. Thermal and electrical loads are considered for the operation scheduling of the microgrid. In case of non-interconnected operation of the microgrid with the main power grid, the proposed method allows the microgrid to meet the power demand by the buildings and distribution loads exploiting only the hosted PEVs, the integrated RES and, if it is necessary or financially optimal, building auxiliary diesel generators. The primary goal of the suggested algorithm is to significantly reduce the overall daily cost of the microgrid's operation while simultaneously meeting a wide range of constraints. The implementation of the method is based on the exploitation of a two-level hierarchical multi-agent system (MAS) at the level of the microgrid. Suitably defined flexibilities of the microgrid's components to change their power are used to implement optimal power dispatch to them. Detailed simulation results indicated that a remarkable cost reduction of 27% can be achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.