In this paper we present a snapshot of endto-end NLG system evaluations as presented in conference and journal papers 1 over the last ten years in order to better understand the nature and type of evaluations that have been undertaken. We find that researchers tend to favour specific evaluation methods, and that their evaluation approaches are also correlated with the publication venue. We further discuss what factors may influence the types of evaluation used for a given NLG system.
Decision-making is often dependent on uncertain data, e.g. data associated with confidence scores or probabilities. We present a comparison of different information presentations for uncertain data and, for the first time, measure their effects on human decision-making. We show that the use of Natural Language Generation (NLG) improves decision-making under uncertainty, compared to state-of-theart graphical-based representation methods. In a task-based study with 442 adults, we found that presentations using NLG lead to 24% better decision-making on average than the graphical presentations, and to 44% better decision-making when NLG is combined with graphics. We also show that women achieve significantly better results when presented with NLG output (an 87% increase on average compared to graphical presentations).
We present a novel approach for automatic report generation from time-series data, in the context of student feedback generation. Our proposed methodology treats content selection as a multi-label (ML) classification problem, which takes as input time-series data and outputs a set of templates, while capturing the dependencies between selected templates. We show that this method generates output closer to the feedback that lecturers actually generated, achieving 3.5% higher accuracy and 15% higher F-score than multiple simple classifiers that keep a history of selected templates. Furthermore, we compare a ML classifier with a Reinforcement Learning (RL) approach in simulation and using ratings from real student users. We show that the different methods have different benefits, with ML being more accurate for predicting what was seen in the training data, whereas RL is more exploratory and slightly preferred by the students.
Decision-making is often dependent on uncertain data, e.g. data associated with confidence scores or probabilities. This article presents a comparison of different information presentations for uncertain data and, for the first time, measures their effects on human decision-making, in the domain of weather forecast generation. We use a game-based setup to evaluate the different systems. We show that the use of Natural Language Generation (NLG) enhances decision-making under uncertainty, compared to state-of-the-art graphical-based representation methods. In a task-based study with 442 adults, we found that presentations using NLG led to 24% better decision-making on average than the graphical presentations, and to 44% better decision-making when NLG is combined with graphics. We also show that women achieve significantly better results when presented with NLG output (an 87% increase on average compared to graphical presentations). Finally, we present a further analysis of demographic data and its impact on decision-making, and we discuss implications for future NLG systems.
A Natural Language Generation (NLG) system is able to generate text from nonlinguistic data, ideally personalising the content to a user's specific needs. In some cases, however, there are multiple stakeholders with their own individual goals, needs and preferences. In this paper, we explore the feasibility of combining the preferences of two different user groups, lecturers and students, when generating summaries in the context of student feedback generation. The preferences of each user group are modelled as a multivariate optimisation function, therefore the task of generation is seen as a multi-objective (MO) optimisation task, where the two functions are combined into one. This initial study shows that treating the preferences of each user group equally smooths the weights of the MO function, in a way that preferred content of the user groups is not presented in the generated summary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.